首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为探讨荒漠草地沙漠化对"土壤-微生物-胞外酶"系统生态化学计量的影响机理,该研究采用空间序列代替时间演替的方法,研究了宁夏盐池荒漠草地沙漠化过程中土壤、土壤微生物及土壤胞外酶碳(C)、氮(N)、磷(P)生态化学计量的变异特征。结果表明:(1)随着荒漠草地沙漠化的不断加剧,土壤C、N、P含量和土壤C:P、N:P均呈降低趋势,而土壤C:N逐渐增加。(2)荒漠草地沙漠化过程中,土壤微生物生物量C (MBC):微生物生物量P (MBP)、微生物生物量N (MBN):MBP和土壤β-葡萄糖苷酶(BG):N-乙酰氨基葡萄糖苷酶(NAG)逐渐降低,而土壤BG:磷酸酶(AP)和NAG:AP基本表现为增加趋势。(3)随着荒漠草地沙漠化程度的加剧,土壤微生物C利用效率CUEC:N和CUEC:P与土壤微生物N利用效率NUEN:C和土壤微生物P利用效率PUEP:C的变化趋势相反。(4)荒漠草地土壤、土壤微生物生物量和土壤胞外酶C:N化学计量(C:N, MBC:MBN, BG:NAG)与土壤、土壤微生物生物量和土壤胞外酶N:P化学计量(N:P,MBN:MBP,NAG:AP)显著负相关,而土壤和胞外酶C:N化学计量(C:N,BG:NAG)与土壤和胞外酶C:P化学计量(C:P,BG:AP)显著正相关。土壤N:P与土壤MBN:MBP显著正相关,而与土壤NAG:AP显著负相关。分析表明,荒漠草地沙漠化过程中土壤微生物生物量及胞外酶活性随着土壤养分的变化而发生变化;微生物-胞外酶C:N:P生态化学计量与土壤养分存在协变关系,为理解荒漠草地土壤-微生物系统C、N、P循环机制提供理论依据。  相似文献   

2.
退耕还林(草)等生态建设工程的实施引起土壤碳(C)、氮(N)、磷(P)循环及其化学计量特征发生变化,继而对土壤微生物生物量的化学计量造成潜在影响,然而,土壤-微生物C∶N∶P化学计量的时间动态及协调关系仍不明确。本试验选取三峡库区小流域退耕地——茶园为研究对象,以玉米地为对照,探索土壤-微生物生物量C、N、P随植茶年限(<5 a、5~10 a、10~20 a、20~30 a和>30 a)的变化特征,分析其化学计量比、微生物熵(qMBC、qMBN、qMBP)、化学计量不平衡性(土壤C、N、P计量比与微生物生物量C、N、P计量比的比值)之间的关系。结果表明:随着植茶年限增加,土壤和微生物生物量C、N、P、土壤C∶N和C∶P均显著升高,而土壤N∶P整体下降,微生物生物量C∶P和N∶P呈先升后降的变化趋势,微生物生物量C∶N变化不显著。此外,茶树种植年限对土壤、微生物间的化学计量不平衡性以及微生物熵均存在显著影响,随着植茶年限增加,qMBC先降低后升高,qMBN和qMBP呈波动上升;碳氮化学计量不平衡性(C∶Nimb)和碳磷化学计量不平衡性(C∶Pi...  相似文献   

3.
《植物生态学报》2018,42(10):1022
为探讨荒漠草地沙漠化对“土壤-微生物-胞外酶”系统生态化学计量的影响机理, 该研究采用空间序列代替时间演替的方法, 研究了宁夏盐池荒漠草地沙漠化过程中土壤、土壤微生物及土壤胞外酶碳(C)、氮(N)、磷(P)生态化学计量的变异特征。结果表明: (1)随着荒漠草地沙漠化的不断加剧, 土壤C、N、P含量和土壤C:P、N:P均呈降低趋势, 而土壤C:N逐渐增加。(2)荒漠草地沙漠化过程中, 土壤微生物生物量C (MBC):微生物生物量P (MBP)、微生物生物量N (MBN):MBP和土壤β-葡萄糖苷酶(BG):N-乙酰氨基葡萄糖苷酶(NAG)逐渐降低, 而土壤BG:磷酸酶(AP)和NAG:AP基本表现为增加趋势。(3)随着荒漠草地沙漠化程度的加剧, 土壤微生物C利用效率CUEC:NCUEC:P与土壤微生物N利用效率NUEN:C和土壤微生物P利用效率PUEP:C的变化趋势相反。(4)荒漠草地土壤、土壤微生物生物量和土壤胞外酶C:N化学计量(C:N, MBC:MBN, BG:NAG)与土壤、土壤微生物生物量和土壤胞外酶N:P化学计量(N:P, MBN:MBP, NAG:AP)显著负相关, 而土壤和胞外酶C:N化学计量(C:N, BG:NAG)与土壤和胞外酶C:P化学计量(C:P, BG:AP)显著正相关。土壤N:P与土壤MBN:MBP显著正相关, 而与土壤NAG:AP显著负相关。分析表明, 荒漠草地沙漠化过程中土壤微生物生物量及胞外酶活性随着土壤养分的变化而发生变化; 微生物-胞外酶C:N:P生态化学计量与土壤养分存在协变关系, 为理解荒漠草地土壤-微生物系统C、N、P循环机制提供理论依据。  相似文献   

4.
荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应   总被引:1,自引:0,他引:1  
采用空间序列代替时间演替的方法,分析宁夏中北部盐池县荒漠草地不同沙漠化阶段(荒漠草地、固定沙地、半固定沙地和流动沙地)土壤微生物生物量(SMB)和微生物熵(qMB)的变化特征及其影响因子.结果表明:从荒漠草地到流动沙地,土壤微生物生物量碳、氮、磷分别降低46.1%、80.8%和30.0%.随着荒漠草地沙漠化程度的加剧,土壤微生物熵碳(qMBC)、土壤微生物熵氮(qMBN)、土壤微生物熵磷(qMBP)均表现为荒漠草地>固定沙地>半固定沙地>流动沙地,而土壤-微生物化学计量不平衡性(C∶Nimb、C∶Pimb、N∶Pimb)基本呈增加趋势.土壤微生物生物量氮与C∶Nimb呈显著正相关,与N∶Pimb呈显著负相关;土壤微生物生物量磷与C∶Pimb呈显著正相关.冗余分析(RDA)显示,土壤生态化学计量(C∶N、C∶P)对微生物熵碳的负效应最明显.荒漠草地沙漠化显著影响土壤微生物生物量和微生物熵.  相似文献   

5.
《植物生态学报》2019,43(11):999
海拔变化导致温度、水分、植被等条件的改变会显著影响土壤碳(Csoil)、氮(Nsoil)、磷(Psoil)含量及其化学计量特征, 土壤微生物如何通过调整自身生物量和胞外酶化学计量特征进行适应仍不明确。为了研究海拔梯度变化对土壤微生物生物量和胞外酶活性的影响, 探索土壤-微生物-胞外酶C:N:P化学计量特征间的协变性, 该文以黑龙江省雪乡大秃顶子山800、1 100、1 600和1 700 m分布的典型生态系统(针阔混交林、针叶林、岳桦林和草地)为研究对象, 测定其Csoil、Nsoil、Psoil含量, 微生物生物量C (Cmic)、N (Nmic)、P (Pmic)含量, 以及微生物获取C (β-1, 4-葡萄糖苷酶, BG), N (几丁质酶, NAG), P (酸性磷酸酶, AP)资源的相关胞外酶活性。结果表明: (1)海拔梯度变化对Csoil和Cmic含量没有显著影响; 不同海拔间土壤和微生物生物量N、P含量存在显著差异。(2) BG和NAG活性随着海拔的升高呈现显著降低趋势, 表明海拔升高导致的温度降低抑制了微生物的活性。(3)海拔对土壤C:N、微生物C:N:P以及胞外酶C:N:P均具有显著影响。胞外酶C:N:P随着微生物与土壤间C:N:P化学计量不平衡性(土壤C:N:P与微生物C:N:P的比值)的增加而逐渐降低。微生物可以通过调整自身生物量以及胞外酶C:N:P适应土壤化学计量特征的变异, 该结果支持了微生物的资源分配理论。  相似文献   

6.
生物结皮的形成和发育显著影响土壤碳(C)、氮(N)、磷(P)循环及其化学计量特征,土壤微生物如何适应环境资源的化学计量变化仍不明确。本研究以三峡库区苔藓结皮为对象,分析结皮盖度(0、1%~20%、20%~40%、40%~60%、60%~80%和80%~100%)对土壤理化性质(0~5和5~10 cm土层)、微生物生物量和胞外酶活性[(β-1,4-葡萄糖苷酶(BG)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、酸性磷酸酶(AP)]的影响,探索土壤-微生物-胞外酶C∶N∶P化学计量特征间的协变性。结果表明: 生物结皮发育显著提高了土壤黏粒、水稳性团聚体和土壤C、N、P含量,显著降低了土壤容重和砂粒含量;微生物生物量C、N、P和胞外酶活性均随结皮盖度的增大而显著增加;土层深度对土壤理化性质及C∶N∶P均无显著影响,但显著影响微生物生物量、胞外酶活性及BG∶AP和NAG∶AP。相关分析显示,土壤C、N、P含量与微生物生物量和胞外酶活性呈显著正相关,与BG∶NAG呈显著负相关,与NAG∶AP呈显著正相关,但与微生物生物量C∶N∶P无显著相关性;土壤-微生物、微生物-胞外酶C∶N∶P相关性均不显著,BG∶NAG∶AP随着微生物与土壤间C∶N∶P化学计量不平衡性的增加而逐渐降低。表明微生物养分代谢同时受N和P的限制,且P的限制较强烈,微生物可以通过调整自身生物量以及胞外酶C∶N∶P适应生物结皮发育驱动的土壤化学计量变化,从而维持内稳态。  相似文献   

7.
探讨长期不同施肥制度对农田土壤、植物生态系统的碳(C)、氮(N)、磷(P)含量及其生态化学计量比的影响,可为揭示该系统能量平衡和养分循环,实现农业生态系统元素平衡及可持续发展提供参考意义。以位于黄土高原半干旱地区的长武国家黄土高原农业生态实验站长期施肥试验为研究对象,选取不施肥(CK)、单施氮肥(N)、单施磷肥(P)、施氮磷肥(NP)、单施有机肥(M)、氮肥配施有机肥(NM)、磷肥配施有机肥(PM)、氮磷肥配施有机肥(NPM)8个处理,分析了黄土旱塬典型农田土壤-微生物-植物生态系统中C、N、P含量及其生态化学计量变化规律。研究结果表明:1)长期单施有机肥和化肥配施有机肥处理可显著提高土壤和有机质C、N、P含量。2)氮、磷肥的输入显著降低了土壤和小麦C∶N、N∶P,施P显著降低了有机态C∶P和小麦C∶P;有机肥配施对微生物生物量和小麦C∶N∶P的影响更为明显。3)长期有机肥配施条件下土壤养分和小麦化学计量比存在较强的相关关系。微生物生物量碳与有机C、N、P呈显著正相关,土壤微生物生物量氮与土壤N、P总量呈显著正相关,微生物生物量磷与土壤C、N、P总量含量呈显著负相关;植株碳含量与微生物...  相似文献   

8.
大气氮(N)沉降增加加速了土壤N循环, 引起微生物生物量碳(C):N:磷(P)生态化学计量关系失衡、植物种丧失和生态系统服务功能降低等问题。开展N添加下植物群落组成与微生物生物量生态化学计量特征关系的研究, 可为深入了解N沉降增加引起植物多样性降低的机理提供新思路。该文以宁夏荒漠草原为研究对象, 探讨了N添加下植物生物量和群落多样性的变化趋势, 分析了微生物生物量C:N:P生态化学计量特征独立及其与其他土壤因子共同对植物群落组成的影响。结果表明: N添加下猪毛菜(Salsola collina)生物量呈显著增加趋势, 牛枝子(Lespedeza potaninii)生物量呈逐渐降低趋势, 其他植物种生物量亦呈降低趋势但未达到显著水平; 沿N添加梯度, Shannon-Wiener多样性指数、Simpson优势度指数和Patrick丰富度指数均呈先略有增加后逐渐降低的趋势; N添加提高了微生物生物量N含量和N:P, 降低了微生物生物量C:N; 植物群落组成与微生物生物量N含量、微生物生物量C:N、微生物生物量N:P、土壤NO3 --N浓度、土壤NH4 +-N浓度以及土壤全P含量有较强的相关关系; 微生物生物量C:N:P生态化学计量特征对植物种群生物量和群落多样性变化的独立解释力较弱, 但却与其他土壤因子共同解释了较大变差, 意味着N添加下微生物生物量C:N:P生态化学计量特征对植物群落组成的影响与其他土壤因子高度相关。  相似文献   

9.
大气氮(N)沉降增加加速了土壤N循环,引起微生物生物量碳(C):N:磷(P)生态化学计量关系失衡、植物种丧失和生态系统服务功能降低等问题。开展N添加下植物群落组成与微生物生物量生态化学计量特征关系的研究,可为深入了解N沉降增加引起植物多样性降低的机理提供新思路。该文以宁夏荒漠草原为研究对象,探讨了N添加下植物生物量和群落多样性的变化趋势,分析了微生物生物量C:N:P生态化学计量特征独立及其与其他土壤因子共同对植物群落组成的影响。结果表明:N添加下猪毛菜(Salsolacollina)生物量呈显著增加趋势,牛枝子(Lespedezapotaninii)生物量呈逐渐降低趋势,其他植物种生物量亦呈降低趋势但未达到显著水平;沿N添加梯度,Shannon-Wiener多样性指数、Simpson优势度指数和Patrick丰富度指数均呈先略有增加后逐渐降低的趋势;N添加提高了微生物生物量N含量和N:P,降低了微生物生物量C:N;植物群落组成与微生物生物量N含量、微生物生物量C:N、微生物生物量N:P、土壤NO3--N浓度、土壤NH4+-N浓度以及土壤全P含量有较强的相关关系;微生物生物量C:N:P生态化学计量特征对植物种群生物量和群落多样性变化的独立解释力较弱,但却与其他土壤因子共同解释了较大变差,意味着N添加下微生物生物量C:N:P生态化学计量特征对植物群落组成的影响与其他土壤因子高度相关。  相似文献   

10.
基于2017年在宁夏荒漠草原设立的降水量(减少50%、减少30%、自然降水、增加30%以及增加50%)和N添加(0和5 g·m~(-2)·a~(-1))野外试验,研究了植物和土壤微生物C∶N∶P生态化学计量特征,分析二者与土壤C∶N∶P生态化学计量特征及其他土壤因子的关系,以探讨降水格局改变和大气N沉降增加下荒漠草原植物和土壤微生物C∶N∶P平衡特征及其主要影响因素。结果表明:(1)减少降水量对荒漠草原植物和土壤微生物C∶N∶P生态化学计量特征的影响较小,反映了二者对短期干旱的适应性;增加降水量降低了植物和土壤微生物生物量N和P含量,不同程度地提高了C∶N和C∶P,但其影响程度与N添加有关。(2)增减降水量条件下, N添加对植物生态化学计量特征影响较小,但对土壤微生物C∶N∶P生态化学计量特征影响较大,尤其在增加降水量条件下表现得更明显,意味着降水激发了N添加效应。(3)植物全N含量、N∶P以及土壤微生物生物量N含量的内稳性较低,可较好地反映土壤N供给水平以及N、P受限类型。(4)与植物C∶N∶P生态化学计量特征关系较强的土壤因子为速效P含量、磷酸酶活性、电导率、C∶P和有机C含量,与土壤微生物C∶N∶P生态化学计量特征关系较强的土壤因子有电导率、含水量、蔗糖酶活性和磷酸酶活性,表明植物和土壤微生物C∶N∶P平衡特征主要受其他土壤因子的调控,而非土壤元素平衡关系。  相似文献   

11.
《植物生态学报》2016,40(12):1257
AimsThe carbon (C), nitrogen (N) and phosphorus (P) stoichiometry (C:N:P) of soil profoundly influences the growth, community structure, biomass C:N:P stoichiometry, and metabolism in microbes. However, the relationships between soil and microbes in the C:N:P stoichiometry and their temporal dynamics during ecosystem succession are poorly understood. The aim of this study was to determine the temporal patterns of soil and microbial C:N:P stoichiometry and their relationships during ecosystem succession.MethodsAn extensive literature search was conducted and data were compiled for 19 age sequences of successional ecosystems, including 13 forest ecosystems and 6 grassland ecosystems, from 18 studies published up to May 2016. Meta-analyses were performed to examine the sequential changes in 18 variables that were associated with soil and microbial C, N and P contents and the stoichiometry. Important findings (1) There was no consistent temporal pattern in soil C:N along the successional stages, whereas the soil C:P and N:P increased with succession; the slopes of the linear relationships between soil C:N:P stoichiometry and successional age were negatively correlated with the initial content of the soil organic C within given chronosequence. (2) There was no consistent temporal pattern in microbial C:N:P stoichiometry along the successional stages. (3) The fraction of microbial biomass C in soil organic C (qMBC), the fraction of microbial biomass N in soil total N, and the fraction of microbial biomass P in soil total P all increased significantly with succession, in consistency with the theory of succession that ecosystem biomass per unit resource increases with succession. (4) The qMBC decreased with increases in the values of soil C:N, C:P, or N:P, as well as the stoichiometric imbalances in C:N, C:P, and N:P between soil and microbes (i.e., ratios of soil C:N, C:P, and N:P to microbial biomass C:N, C:P, and N:P, respectively). The C:N, C:P, and N:P stoichiometric imbalances explained 37%-57% variations in the qMBC, about 7-17 times more than that explainable by the successional age, illustrating the importance of soil-microbial C:N:P stoichiometry in shaping the successional dynamics in qMBC. In summary, our study highlights the importance of the theories of ecosystem succession and stoichiometry in soil microbial studies, and suggests that appropriately applying macro-ecological theories in microbial studies may improve our understanding on microbial ecological processes.  相似文献   

12.
研究黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征影响有助于深入理解黄土丘陵区不同植被带下土壤和土壤微生物相互作用及养分循环规律.选择黄土丘陵区延河流域3个植被区(森林区、森林草原区、草原区)和5种地形部位(阴/阳沟坡、阴/阳梁峁坡、峁顶)的土壤作为研究对象,利用生态化学计量学理论研究植被和地形对土壤和土壤微生物生物量生态化学计量特征的影响.结果表明: 土壤及土壤微生物生物量碳、氮、磷含量在不同地形之间的差别主要表现在沟坡位置和阴坡高于其他坡位和阳坡.植被类型的变化对两个土层(0~10、10~20 cm)土壤和土壤微生物生物量碳、氮、磷的影响均达到显著水平,坡向对表层(0~10 cm)土壤和土壤微生物生物量碳、氮、磷的影响强于坡位,而在10~20 cm土层,坡位对土壤和土壤微生物生物量碳、氮、磷影响更显著.植被类型显著影响土壤C∶N、C∶P、N∶P和土壤微生物生物量C∶N、C∶P,坡向和坡位仅影响土壤C∶P和N∶P,植被类型的变化是影响土壤C∶N的主要因素.同时,植被类型对土壤养分和微生物生物量碳、氮、磷含量及其生态化学计量特征的影响大于地形因子.标准化主轴分析结果表明,黄土丘陵区不同植被带土壤微生物具有内稳性,特别在草原带,土壤微生物生物量生态化学计量学特征具有更加严格的约束比例.在黄土丘陵区,土壤微生物生物量N∶P或许可以作为判断养分限制的另一个有力工具,若将土壤微生物生物量N∶P与植物叶片N∶P配合使用可能有助于我们更加精确地判断黄土丘陵区的土壤养分限制情况.  相似文献   

13.
冰川消退带微生物群落演替及生物地球化学循环   总被引:1,自引:0,他引:1  
周汉昌  马安周  刘国华  庄国强 《生态学报》2018,38(24):9021-9033
冰川是生物圈重要组分之一。由于全球气候变化世界多地冰川加速消融,暴露原本被冰盖覆盖的区域,这些区域被称为冰川消退区域(glacier retreat area)或冰川前部区域(glacier foreland)。自暴露开始消退区随即发生初生演替,随着演替进行,物质循环逐步建立,生物量和土壤C、N总量逐步增加。生态系统C、N输入最初以矿化外来物为主,逐渐转变为以生物固C、固N为主。演替早期生态系统的发育主要受土壤C、N含量的限制,而演替后期的限制性营养物转变为P。演替区域土壤逐渐发育并促进生态位的分化,细菌、真菌、古菌,病毒及其他微生物群落的生物量和多样性不断增加直至达到该地区可承受的极值。随着生存条件的改善,不同生态策略物种的更替导致每个演替阶段微生物群落结构的差异。整体上,伴随演替进行微生物群落丰度、结构和活性呈现梯度性变化。气候变化对冰川消退带生态演替结果产生多方面的影响,而这些影响结果又综合反馈气候变化,因此目前难以准确估计气候变化对消退带生态演替的净效应。综述了近年冰川消退带微生物群落演替方面相关的研究结果,同时分别对该区域物质循环的建立、微生物群落演替和气候变化造成的影响这三个方面进行详细描述,并指出当前研究的不足。  相似文献   

14.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

15.
Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (?10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems.  相似文献   

16.
微生物和土壤酶是陆地生态系统中生物地球化学循环的重要驱动力,深入理解微生物在生态系统中的调节作用以及气候变化过程中微生物量和土壤酶的响应机制是生态学领域关注的重要科学问题.本研究从气候因素角度出发,基于生态化学计量学理论,综述了微生物和土壤酶在陆地生态系统碳氮磷循环中的作用,以及土壤微生物生物量碳氮磷和土壤酶化学计量对气候变化的响应机制,即: 改变微生物代谢速率和酶活性;调整微生物群落结构;调整微生物生物量碳氮磷与土壤酶化学计量特征;改变碳氮磷养分元素利用效率.最后分析当前研究的不足,并提出了该领域亟待解决的科学问题: 综合阐明土壤微生物和土壤酶对气候变化的响应机制;探究土壤微生物和胞外酶养分耦合机理;深入探究土壤微生物量和土壤酶化学计量特征对气候变化的适应对策.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号