首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six new mixed-ligand complexes of Co(II) with ciprofloxacin (Cip) and neutral bidentate ligands have been synthesized and characterized. Binding and cleavage of DNA with the complex were investigated using spectroscopic method, viscosity measurements and gel electrophoresis techniques. Antibacterial activity has been assayed against two Gram(?ve) and three Gram(+ve) microorganisms using the doubling dilution technique.  相似文献   

2.
The complexes of oxovanadium(IV) with ciprofloxacin and various uni-negative bidentate ligands have been prepared and their structure investigated using spectral, physicochemical and elemental analyses. The viscosity measurement suggest that the complexes bind to DNA by intercalation. The DNA binding efficacy was determined using absorption titration to obtain the binding constant (Kb). The DNA cleavage efficacy was determined using gel electrophoresis. The DNA binding and cleavage efficacy were increased in the complexes relative to the parental ligands and metal salts. Antibacterial activity has been assayed against two Gram( ? ve) i.e. Escherichia coli, Pseudomonas aeruginosa and three Gram( + ve) Staphylococcus aureus, Bacillus subtilis, Serratia marcescens microorganisms using the doubling dilution technique. The results show a significant increase in antibacterial activity in the complexes compared with parental ligands and metal salts.  相似文献   

3.
Systemic lupus erythematosus (SLE) is characterized by prominent autoinflammatory tissue damage associated with impaired removal of dying cells and DNA. Self DNA-containing immune complexes are able to activate both innate and adaptive immune responses and play an important role in the maintenance and exacerbation of autoimmunity in SLE. In this study, we used DNA from lymphocytes that have undergone activation-induced cell death (ALD-DNA) and analyzed its role on the activation and differentiation of B cells from normal BALB/c mice as well as lupus-prone MRL+/+ and MRL/lpr mice. We found that ALD-DNA directly increased the expression of costimulatory molecules and the survival of naïve B cells in vitro. Although ALD-DNA alone had little effect on the proliferation of naïve B cells, it enhanced LPS-activated B cell proliferation in vitro and in vivo. In addition, ALD-DNA increased plasma cell numbers and IgG production in LPS-stimulated cultures of naïve B cells, in part via enhancing IL-6 production. Importantly, B cells from lupus mice were hyperresponsive to ALD-DNA and/or LPS relative to normal control B cells in terminal plasma cell differentiation, as evidenced by increases in CD138+ cell numbers, IgM production, and mRNA levels of B lymphocyte-induced maturation protein-1 (Blimp-1) and the X-box binding protein 1 (XBP1). Furthermore, ALD-DNA enhanced CD40-activated naïve B cell proliferation. Collectively, these data indicate that self DNA can serve as a DAMP (damage-associated molecular pattern) that cooperates with signals from both innate and adaptive immunity to promote polyclonal B cell activation, a common characteristic of autoimmune diseases.  相似文献   

4.
Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA.  相似文献   

5.
Two novel Ru(II) complexes [Ru(bpy)2(MCMIP)]2+ (1) and [Ru(phen)2(MCMIP)]2+ (2) (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline; MCMIP = 2-(6-methyl-3-chromonyl)imidazo[4,5-f][1,10]-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra and 1H NMR. The DNA-binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the two complexes can intercalate into DNA base pairs. Upon irradiation at 365 nm, two Ru(II) complexes were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form I to nicked form II, and the mechanisms for DNA cleavage by the complexes were also investigated.  相似文献   

6.
A novel asymmetric bidentate ligand, 2-(pyrazin-2-yl)naphthoimidazole (PZNI), and its Ru(II) complexes [Ru(bpy)2(PZNI)]2+ (1) and [Ru(phen)2(PZNI)]2+ (2) have been synthesized and characterized by elemental analysis, mass spectra, 1H NMR, and electronic spectroscopy. The electrochemical behaviors of the novel complexes were studied by cyclic voltammetry. The DNA-binding properties of the complexes were investigated by spectroscopic methods and viscosity measurements. The experimental results indicate that the complexes 1 and 2 interact with calf thymus DNA by intercalative mode via the terminal naphthyl ring into the base pairs of DNA. The two Ru(II) complexes have also been found to promote the cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II upon irradiation.  相似文献   

7.
The synthetic, spectroscopic, and biological studies of Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) complexes of N4-(7′-chloroquinoline-4′-ylamino)-N1-(2-hydroxy-benzylidene)thiosemicarbazone (HL) obtained by the reaction of N4-(7′-chloroquinolin-4′-ylamino)thiosemicarbazide with 2-hydroxybenzaldehyde. The structures of the complexes were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR and Mass spectra) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed the non-electrolytic nature of the complexes. The resulting colored products are mononuclear in nature. On the basis of the above studies, only one ligand was suggested to be coordinated to each metal atom by thione sulfur, azomethine nitrogen and phenolic oxygen to form mononuclear complexes in which the thiosemicarbazone behaves as a monobasic tridendate ligand. The ligand and its metal complexes were tested against Gram + ve bacteria (Staphylococcus aureus), Gram ? ve bacteria (Escherichia coli), fungi (Candida albicans) and (Fusarium solani). The tested compounds exhibited significant activity.  相似文献   

8.
Abstract

Using the gel shift assay system, we have measured the apparent affinity constant for the interaction of two different DNAs with MAP proteins found in both total calf brain microtubules and heat stable brain preparations. Both DNAs studied contained centromere/kinetochore sequences- one was enriched in the calf satellite DNA; the other was a large restriction fragment containing the yeast CEN11 DNA sequence. Complexes formed using both DNAs had similar Kapp values in the range of 2.1×107 M?1 to 2.0×108 M?1. CEN11 DNA-MTP complexes had by far the highest Kapp value of 2.0×108 M?1. The CEN11 DNA sequence is where the yeast kinetochore of chromosome 11 is formed and where the single yeast microtubule is bound in vivo. The CEN11 conserved region II known binding sites -(dA/dT)n runs- for mammalian MAP2 protein, are in good agreement with this higher Kapp value. The effects of the classical tubulin binding drugs colchicine, podophyllotoxin and vinblastine on the DNA-MAP protein complex stability were investigated by determining the drug concentrations where the complexes were destabilized. Only the complexes formed from total microtubule protein (tubulin containing) were destabilized over a wide drug concentration range. Heat stable brain protein complexes (no tubulin) were largely unaffected. Furthermore, it took 10–100 fold higher drug concentrations to disrupt the CEN 11 DNA complexes compared to the calf thymus satellite DNA enriched complexes. These data support our previous results suggesting that there is a DNA sequence dependent interaction with MAP proteins that appears to be conserved in evolution (Marx et. al., Biochim. Biophys. Acta. 783, 383–392,1984; Marx and Denial, Molecular Basis of Cancer 172B,65-15 1985). In addition, these results imply that the classical tubulin binding drugs may exert their biological effects in cells at least in part by disrupting DNA-Protein complexes of the type we have studied here.  相似文献   

9.
10.
A new series of complexes of a ligand 4′, 7, 8-trihydroxy-isoflavone with transition metal (zinc, copper, manganese, nickel, cobalt) and selenium have been synthesized and characterized with the aid of elemental analysis, IR, electron ionization mass spectrum (EI-MS) and 1H NMR spectrometric techniques. The compounds were evaluated for their in vitro antibacterial activities and antitumor properties. The metal complexes were found to be more active than the free ligand. Investigation on the interaction between the complexes and calf-thymus DNA (CT DNA) showed that the absorbance of CT DNA increased and the maximum peak (λmax = 260 nm) red-shifted, while the intensity of fluorescence spectra of Epstein-Bart DNA (EB-DNA) gradually weakened, which indicated that all of these metal complexes tightly combined with CT DNA.  相似文献   

11.
Four Ru(II) polypyridyl complexes, [Ru(bpy)2(7-NO2-dppz)]2+, [Ru(bpy)2(7-CH3-dppz)]2+, [Ru(phen)2(7-NO2-dppz)]2+, and [Ru(phen)2(7-CH3-dppz)]2+ (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), (7-Nitro-dppz = 7-Nitro dipyrido[3,2-a:2′-3′-c]phenazine, 7-CH3-dppz = 7-Methyl dipyrido[3,2-a:2′-3′-c]phenazine), have been synthesized and characterized by IR, UV, elemental analysis, 1H NMR, 13C-NMR, and mass spectroscopy. The DNA-binding properties of the four complexes were investigated by spectroscopic and viscosity measurements. The results suggest that all four complexes bind to DNA via an intercalative mode. Under irradiation at 365 nm, all four complexes were found to promote the photocleavage of plasmid pBR 322 DNA. Toxicological effects of the selected complexes were performed on industrially important yeasts (eukaryotic microorganisms).  相似文献   

12.
A pair of chiral binuclear ruthenium(II) complexes were prepared and their binding affinities towards double stranded native DNA were assessed by observing isotropic absorption, polarized light spectra - circular and linear dichroism (CD and LD), fluorescence quenching and DNA thermal denaturation. Upon binding to DNA, the complexes produced LD signals consisting of positive and negative signals in the absorption region, although they exhibited red shift and hypochromism in the absorption spectrum. These contrasting observations indicated that the binding modes of the complexes are largely deviated from classical intercalative binding. Groove binding of the complexes to DNA was found to be more likely than intercalative binding. The small increase of DNA melting temperature in the presence of the complexes indicated a predominance of DNA groove binding. The absence of “molecular light switch effect” further supported non-intercalative binding. The groove binding propensity of complexes was also supported by comparison of the resulting data with the [Ru(phen)2(dppz)]2+.  相似文献   

13.
Biological activities of a series of palladium(II) complexes (M1–M9) bearing NN, NS, and NO chelating ligands are reported. The palladium complexes were tested for their cytotoxic properties against human cervical cancer (HeLa) cells and antibacterial activity against Gm+ve and Gm–ve bacteria. Among the palladium complexes studied (M1-M9), the complex M5, M8, and M9 were found to be more effective in inhibiting the proliferation of HeLa cells. Hence, these complexes were further investigated for their potential role in cellular damage and apoptosis. DCFDA staining, Rhodamine 123 staining and DNA cleavage assay revealed that complex M5, M8 and M9 induced apoptotic cell death in HeLa cells through ROS generation, DNA damage and mitochondrial depolarization. Computational and titration studies also indicated strong electrostatic interaction with DNA groove. Most of the complexes exhibited good antibacterial activity against both Gm+ve and Gm−ve bacteria. The antibacterial activity of the compounds could not be correlated with their anticancer activity indicating a differential mechanism at their effective concentrations. The detailed study on the antibacterial mechanism of the most potent complex M7 revealed that it exerted its antibacterial activity by inhibiting the function of FtsZ and perturbing the localization of the Z-ring at the mid cell.  相似文献   

14.
ML Mello  BC Vidal 《PloS one》2012,7(8):e43169

Background

The infrared (IR) analysis of dried samples of DNA and DNA-polypeptide complexes is still scarce. Here we have studied the FT-IR profiles of these components to further the understanding of the FT-IR signatures of chromatin and cell nuclei.

Methodology/Principal Findings

Calf thymus and salmon testis DNA, and complexes of histone H1, protamine, poly-L-lysine and poly-L-arginine (histone-mimic macromolecules) with DNA were analyzed in an IR microspectroscope equipped with an attenuated total reflection diamond objective and Grams software. Conditions including polypeptides bound to the DNA, DNA base composition, and single-stranded form were found to differently affect the vibrational characteristics of the chemical groups (especially, PO2 ) in the nucleic acid. The antisymmetric stretching (νas) of the DNA PO2 was greater than the symmetric stretching (νs) of these groups and increased in the polypeptide-DNA complexes. A shift of the νas of the DNA PO2 to a lower frequency and an increased intensity of this vibration were induced especially by lysine-rich histones. Lysine richness additionally contributed to an increase in the vibrational stretching of the amide I group. Even in simple molecules such as inorganic phosphates, the vibrational characteristics of the phosphate anions were differently affected by different cations. As a result of the optimization of the DNA conformation by binding to arginine-rich polypeptides, enhancements of the vibrational characteristics in the FT-IR fingerprint could be detected. Although different profiles were obtained for the DNA with different base compositions, this situation was no longer verified in the polypeptide-DNA complexes and most likely in isolated chromatin or cell nuclei. However, the νas PO2 s PO2 ratio could discriminate DNA with different base compositions and DNA in a single-stranded form.

Conclusions/Significance

FT-IR spectral profiles are a valuable tool for establishing the vibrational characteristics of individualized chromatin components, such as DNA and DNA-polypeptide complexes in dried samples.  相似文献   

15.
《Free radical research》2013,47(4-6):241-258
The asorbic acid (AH?) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH? oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH? oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH? but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), withH2O2

AH? oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded.

Using O2?produced by pulse radiolysis as a reductant, we found that AH? oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper.

The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.  相似文献   

16.
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.  相似文献   

17.
The DNA-binding and photonuclease activity of newly synthesized tetra-azamacrocyclic ligand L (C32H32N8O4) and its complexes of type [MLCl2] and [ML]Cl2 (where M = Co(II), Fe(II) and Cu(II); L = N,N′-[3-(4-{5-[(2-amino-ethylamino)-methyl]-isoxazol-3yl}-phenyl)-isoxazol-5-yl methyl-ethane-1,2-diamine] are specified. An octahedral geometry has been proposed for Fe(II) and Co(II) complexes, while the Cu(II) complex has a square planar environment. The absorption spectral results indicate that the complexes bind with the base pairs of DNA, with an intrinsic binding constant Kb of Fe(II), Co(II), and Cu(II) complexes found to be 3.2 × 104 M?1, 5.3 × 104 M?1, and 4.2 × 104 M?1, respectively, in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2. The large enhancement in the relative viscosity of DNA on binding to the complexes supports the proposed DNA binding modes. The viscosity and thermal denaturation studies sustain the effective intercalation with DNA. The DNA photocleavage studies demonstrated that compounds exhibit significant photonuclease activity by a concentration dependent on singlet oxygen mediated mechanism.  相似文献   

18.
Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)2]2+, with binding constants in the range 3 to 9 × 102 M− 1. DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using 32P-ATP or 32P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.  相似文献   

19.
Abstract

Square planar mononuclear platinum(II) complexes having general formula [Pt(Ln)Cl2], (where, Ln?=?L1–4) were synthesized with neutral bidentate heterocyclic 1,3,5-trisubstituted bipyrazole based ligands. The synthesized compounds were characterized by physicochemical method such as TGA, molar conductance, micro-elemental analysis and magnetic moment, and spectroscopic method such as, FT-IR, UV–vis, 1H NMR, 13C NMR and mass spectrometry. Biological applications of the compounds were carried out using in vitro brine shrimp lethality bioassay, in vitro antimicrobial study against five different pathogens, and cellular level cytotoxicity against Schizosaccharomyces pombe (S. Pombe) cells. Pt(II) complexes were tested for DNA interaction activities using electronic absorption titration, viscosity measurements study, fluorescence quenching technique and molecular docking assay. Binding constants (Kb) of ligands and complexes were observed in the range of 0.23–1.07?×?105?M?1 and 0.51–3.13?×?105?M?1, respectively. Pt(II) complexes (I–IV) display an excellent binding tendency to biomolecule (DNA) and possess comparatively high binding constant (Kb) values than the ligands. The DNA binding study indicate partial intercalative mode of binding in complex-DNA. The gel electrophoresis activity was carried out to examine DNA nuclease property of pUC19 plasmid DNA.  相似文献   

20.
Three binuclear Ru(II) complexes with two [Ru(bpy)2(pip)]2+-based subunits {where bpy = 2,2′-bipyridine and pip = 2-phenylimidazo[4,5-f][1,10]phenanthroline} being linked by varied lengths of flexible bridges, were synthesized and characterized by 1H NMR, elemental analysis, UV-visible (UV-vis) and photoluminescence spectroscopy. The structures of the three complexes were optimized by density functional theory calculations. The interaction of the complexes with calf thymus DNA was investigated by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The experimental results indicated that the three complexes bound to the DNA most probably in a threading intercalation binding mode with high DNA binding constant values three orders of magnitude greater than the DNA binding constant value reported for proven DNA intercalator, mononuclear counterpart [Ru(bpy)2(p-mopip)]2+ {p-mopip = 2-(4-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号