首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA–RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA–RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA–RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA–RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA–RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.  相似文献   

3.
Telomeric repeat-containing RNA, a non-coding RNA molecule, has recently been found in mammalian cells. The detailed structural features and functions of the telomeric RNA at human chromosome ends remain unclear, although this RNA molecule may be a key component of the telomere machinery. In this study, using model human telomeric DNA and RNA sequences, we demonstrated that human telomeric RNA and DNA oligonucleotides form a DNA-RNA G-quadruplex. We next employed chemistry-based oligonucleotide probes to mimic the naturally formed telomeric DNA-RNA G-quadruplexes in living cells, suggesting that the process of DNA-RNA G-quadruplex formation with oligonucleotide models of telomeric DNA and RNA could occur in cells. Furthermore, we investigated the possible roles of this DNA-RNA G-quadruplex. The formation of the DNA-RNA G-quadruplex causes a significant increase in the clonogenic capacity of cells and has an effect on inhibition of cellular senescence. Here, we have used a model system to provide evidence about the formation of G-quadruplex structures involving telomeric DNA and RNA sequences that have the potential to provide a protective capping structure for telomere ends.  相似文献   

4.
5.
Tang J  Kan ZY  Yao Y  Wang Q  Hao YH  Tan Z 《Nucleic acids research》2008,36(4):1200-1208
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3′ end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity in vivo and telomerase inhibition via G-quadruplex stabilization is considered a therapeutic strategy against cancer. Theoretically G-quadruplex can form anywhere along the long G-rich strand. Where G-quadruplex forms determines whether the 3′ telomere end is accessible to telomerase and may have implications in other functions telomere plays. We investigated G-quadruplex formation at different positions by DMS footprinting and exonuclease hydrolysis. We show that G-quadruplex preferentially forms at the very 3′ end than at internal positions. This property provides a molecular basis for telomerase inhibition by G-quadruplex formation. Moreover, it may also regulate those processes that depend on the structure of the very 3′ telomere end, for instance, the alternative lengthening of telomere mechanism, telomere T-loop formation, telomere end protection and the replication of bulky telomere DNA. Therefore, targeting telomere G-quadruplex may influence more telomere functions than simply inhibiting telomerase.  相似文献   

6.
To date, various G-quadruplex structures have been reported in the human genome. There are numerous studies focusing on quadruplex-forming sequences in general, but few studies have focused on two or more quadruplexes in the same molecule, which are most commonly found in telomeric DNA and other tandem repeats, e.g., insulin-linked polymorphic region (ILPR). Although the human telomere consists of a number of repeats, higher-order G-quadruplex structures are discussed less often because of the complexity of the structures. In this study, sequences consisting of 4-12 repeats of d(G(4)TGT), d(G(3)T(2)A), and/or d(G(4)T(2)A) have been studied by circular dichroism, ultraviolet spectroscopy, and temperature-gradient gel electrophoresis. These sequences serve as a model for the arrangement of quadruplexes in the telomere and ILPR in solution. Our major findings are as follows. (i) The number of G-rich repeats has a great influence on G-quadruplex stability. (ii) The evidence of quadruplex-quadruplex interaction is confirmed. (iii) For the first time, we directly observed the melting behavior of different conformers in a single experiment. Our results agree with other calorimetric and spectroscopic data and data obtained by single-molecule studies, atomic force microscopy, and mechanical unfolding by optical tweezers. We propose that the end of telomeres can be formed by only a few tandem quadruplexes (fewer than three). Our findings improve our understanding of the mechanism of G-quadruplex formation in long repeats in G-rich-regulating parts of genes and telomere ends.  相似文献   

7.
The G-overhangs of telomeres are thought to adopt particular conformations, such as T-loops or G-quadruplexes. It has been suggested that G-quadruplex structures could be stabilized by specific ligands in a new approach to cancer treatment consisting in inhibition of telomerase, an enzyme involved in telomere maintenance and cell immortality. Although the formation of G-quadruplexes was demonstrated in vitro many years ago, it has not been definitively demonstrated in living human cells. We therefore investigated the chromosomal binding of a tritiated G-quadruplex ligand, 3H-360A (2,6-N,N′-methyl-quinolinio-3-yl)-pyridine dicarboxamide [methyl-3H]. We verified the in vitro selectivity of 3H-360A for G-quadruplex structures by equilibrium dialysis. We then showed by binding experiments with human genomic DNA that 3H-360A has a very potent selectivity toward G-quadruplex structures of the telomeric 3′-overhang. Finally, we performed autoradiography of metaphase spreads from cells cultured with 3H-360A. We found that 3H-360A was preferentially bound to chromosome terminal regions of both human normal (peripheral blood lymphocytes) and tumor cells (T98G and CEM1301). In conclusion, our results provide evidence that a specific G-quadruplex ligand interacts with the terminal ends of human chromosomes. They support the hypothesis that G-quadruplex ligands induce and/or stabilize G-quadruplex structures at telomeres of human cells.  相似文献   

8.
Human telomeric DNA is transcribed into telomeric RNA in cells. Telomeric RNA performs the fundamental biological functions such as regulation and protection of chromosome ends. This digest highlights the human telomere RNA G-quadruplex structures, telomere RNA functions, G-quadruplex-binding small molecules, and future prospects.  相似文献   

9.
Wang Q  Liu JQ  Chen Z  Zheng KW  Chen CY  Hao YH  Tan Z 《Nucleic acids research》2011,39(14):6229-6237
Telomere G-quadruplex is emerging as a promising anti-cancer target due to its inhibition to telomerase, an enzyme expressed in more than 85% tumors. Telomerase-mediated telomere extension and some other reactions require a free 3' telomere end in single-stranded form. G-quadruplex formation near the 3' end of telomere DNA can leave a 3' single-stranded tail of various sizes. How these terminal structures affect reactions at telomere end is not clear. In this work, we studied the 3' tail size-dependence of telomere extension by either telomerase or the alternative lengthening of telomere (ALT) mechanism as well as telomere G-quadruplex unwinding. We show that these reactions require a minimal tail of 8, 12 and 6 nt, respectively. Since we have shown that G-quadruplex tends to form at the farthest 3' distal end of telomere DNA leaving a tail of no more than 5 nt, these results imply that G-quadruplex formation may play a role in regulating reactions at the telomere ends and, as a result, serve as effective drug target for intervening telomere function.  相似文献   

10.
Guanine-rich DNA sequences can form G-quadruplexes stabilized by stacked G–G–G–G tetrads in monovalent cation-containing solution. The length and number of individual G-tracts and the length and sequence context of linker residues define the diverse topologies adopted by G-quadruplexes. The review highlights recent solution NMR-based G-quadruplex structures formed by the four-repeat human telomere in K+ solution and the guanine-rich strands of c-myc, c-kit and variant bcl-2 oncogenic promoters, as well as a bimolecular G-quadruplex that targets HIV-1 integrase. Such structure determinations have helped to identify unanticipated scaffolds such as interlocked G-quadruplexes, as well as novel topologies represented by double-chain-reversal and V-shaped loops, triads, mixed tetrads, adenine-mediated pentads and hexads and snap-back G-tetrad alignments. The review also highlights the recent identification of guanine-rich sequences positioned adjacent to translation start sites in 5′-untranslated regions (5′-UTRs) of RNA oncogenic sequences. The activity of the enzyme telomerase, which maintains telomere length, can be negatively regulated through G-quadruplex formation at telomeric ends. The review evaluates progress related to ongoing efforts to identify small molecule drugs that bind and stabilize distinct G-quadruplex scaffolds associated with telomeric and oncogenic sequences, and outlines progress towards identifying recognition principles based on several X-ray-based structures of ligand–G-quadruplex complexes.  相似文献   

11.
The sequence of human telomeric DNA consists of tandem repeats of 5′-d(TTAGGG)-3′. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by G-quadruplex structures. We analyzed the influence of the arginine-rich, TRF2 N-terminus (TRF2B), as well as this region plus the TRFH domain of TRF2 (TRF2BH), on the structure of G-quadruplexes. Circular dichroism results suggest that oligonucleotides with 4, 7 and 8 5′-d(TTAGGG)-3′ repeats form hybrid structures, a mix of parallel/antiparallel strand orientation, in K+. TRF2B stimulated the formation of parallel-stranded structures and, in some cases, intermolecular structures. TRF2BH also stimulated intermolecular but not parallel-stranded structures. Only full-length TRF2 and TRF2BH stimulated uptake of a telomeric single-stranded oligonucleotide into a plasmid containing telomeric DNA in the presence of K+. The results in this study suggest that G-quadruplex formation inhibits oligonucleotide uptake into the plasmid, but the inhibition can be overcome by TRF2. This study is the first analysis of the effects of TRF2 domains on G-quadruplex structures and has implications for the role of G-quadruplexes and TRF2 in the formation of t-loops.  相似文献   

12.
Dai J  Carver M  Yang D 《Biochimie》2008,90(8):1172-1183
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). Compounds that can stabilize the intramolecular DNA G-quadruplexes formed in the human telomeric sequence have been shown to inhibit the activity of telomerase and telomere maintenance, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. Knowledge of intramolecular human telomeric G-quadruplex structure(s) formed under physiological conditions is important for structure-based rational drug design and thus has been the subject of intense investigation. This review will give an overview of recent progress on the intramolecular human telomeric G-quadruplex structures formed in K(+) solution. It will also give insight into the structure polymorphism of human telomeric sequences and its implications for drug targeting.  相似文献   

13.
The DNA G-quadruplex is an important higher-order structure formed from guanine-rich DNA sequences. There are many molecules which can stabilize this structure. However, the selectivity of these ligands to different G-quadruplexes was not satisfactory. Herein, we designed and synthesized a chemically modified G-quadruplex probe, Razo-DNA, for the unique stabilization of the G-quadruplex. Razo-DNA consists of two fragments: The first is an organic molecular moiety which can stabilize G-quadruplex structures, and the second is a DNA molecule that is complementary with a sequence adjacent to the guanine-rich sequence of targeted DNA. Further studies showed that Razo-DNA could precisely stabilize the targeted DNA G-quadruplex structures in vitro.  相似文献   

14.
Kan ZY  Lin Y  Wang F  Zhuang XY  Zhao Y  Pang DW  Hao YH  Tan Z 《Nucleic acids research》2007,35(11):3646-3653
Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in the double-stranded telomere region where the two complementary strands are constrained in close vicinity and quadruplex formation, if possible, has to compete with the formation of the conventional Watson–Crick duplex. In this work, we studied quadruplex formation in oligonucleotides and double-stranded DNA containing both the G- and C-rich sequences to better mimic the in vivo situation. Under such competitive condition only duplex was observed in dilute solution containing physiological concentration of K+. However, quadruplex could preferentially form and dominate over duplex structure under molecular crowding condition created by PEG as a result of significant quadruplex stabilization and duplex destabilization. This observation suggests quadruplex may potentially form or be induced at the blunt end of a telomere, which may present a possible alternative form of structures at telomere ends.  相似文献   

15.
Single-stranded DNA overhangs at the ends of human telomeric repeats are capable of adopting four-stranded G-quadruplex structures, which could serve as potential anticancer targets. Out of the five reported intramolecular human telomeric G-quadruplex structures, four were formed in the presence of K+ ions and only one in the presence of Na+ ions, leading often to a perception that this structural polymorphism occurs exclusively in the presence of K+ but not Na+. Here we present the structure of a new antiparallel (2+2) G-quadruplex formed by a derivative of a 27-nt human telomeric sequence in Na+ solution, which comprises a novel core arrangement distinct from the known topologies. This structure complements the previously elucidated basket-type human telomeric G-quadruplex to serve as reference structures in Na+-containing environment. These structures, together with the coexistence of other conformations in Na+ solution as observed by nuclear magnetic resonance spectroscopy, establish the polymorphic nature of human telomeric repeats beyond the influence of K+ ions.  相似文献   

16.
Intramolecular G-quadruplexes formed by human telomere sequences are attractive anticancer targets. Recently, four-repeat human telomere sequences have been shown to form two different intramolecular (3 + 1) G-quadruplexes in K(+) solution (Form 1 and Form 2). Here we report on the solution structures of both Form 1 and Form 2 adopted by natural human telomere sequences. Both structures contain the (3 + 1) G-tetrad core with one double-chain-reversal and two edgewise loops, but differ in the successive order of loop arrangements within the G-quadruplex scaffold. Our results provide the structural details at the two ends of the G-tetrad core in the context of natural sequences and information on different loop conformations. This structural information might be important for our understanding of telomere G-quadruplex structures and for anticancer drug design targeted to such scaffolds.  相似文献   

17.
hnRNP A1 associates with telomere ends and stimulates telomerase activity   总被引:6,自引:1,他引:5  
Telomerase is a ribonucleoprotein enzyme complex that reverse-transcribes an integral RNA template to add short DNA repeats to the 3'-ends of telomeres. G-quadruplex structure in a DNA substrate can block its extension by telomerase. We have found that hnRNP A1--which was previously implicated in telomere length regulation--binds to both single-stranded and structured human telomeric repeats, and in the latter case, it disrupts their higher-order structure. Using an in vitro telomerase assay, we observed that depletion of hnRNP A/B proteins from 293 human embryonic kidney cell extracts dramatically reduced telomerase activity, which was fully recovered upon addition of purified recombinant hnRNP A1. This finding suggests that hnRNP A1 functions as an auxiliary, if not essential, factor of telomerase holoenzyme. We further show, using chromatin immunoprecipitation, that hnRNP A1 associates with human telomeres in vivo. We propose that hnRNP A1 stimulates telomere elongation through unwinding of a G-quadruplex or G-G hairpin structure formed at each translocation step.  相似文献   

18.
Fletcher TM 《IUBMB life》2003,55(8):443-449
Telomeres, nucleoprotein complexes at the end of eukaryotic chromosomes, have vital roles in chromosome integrity. Telomere chromatin structure is both intricate and dynamic allowing for a variety of responses to several stimuli. A critical determinant in telomere structure is the G-strand overhang. Facilitated by telomeric proteins, the G-strand overhang stabilizes telomere higher-order assemblies most likely by adopting unusual DNA structures. These structures influence activities that occur at the chromosome end. Dysfunctional telomeres induce signals resulting in cell growth arrest or death. To overcome telomere dysfunction, cancer cells activate the DNA polymerase, telomerase. The presence of telomerase at the telomere may establish a particular telomeric state. If the chromosome ends of cancer and normal cells exist in different states, cancer-specific telomere structures would offer a unique chemotherapeutic target.  相似文献   

19.
It is well established that G-quadruplex DNA structures form at ciliate telomeres and their formation throughout the cell-cycle by telomere-end-binding proteins (TEBPs) has been analyzed. During replication telomeric G-quadruplex structure has to be resolved to allow telomere replication by telomerase. It was shown that both phosphorylation of TEBPβ and binding of telomerase are prerequisites for this process, but probably not sufficient to unfold G-quadruplex structure in timely manner to allow replication to proceed. Here we describe a RecQ-like helicase required for unfolding of G-quadruplex structures in vivo. This helicase is highly reminiscent of human RecQ protein-like 4 helicase as well as other RecQ-like helicase found in various eukaryotes and E. coli. In situ analyses combined with specific silencing of either the telomerase or the helicase by RNAi and co-immunoprecipitation experiments demonstrate that this helicase is associated with telomerase during replication and becomes recruited to telomeres by this enzyme. In vitro assays showed that a nuclear extract prepared from cells in S-phase containing both the telomerase as well as the helicase resolves telomeric G-quadruplex structure. This finding can be incorporated into a mechanistic model about the replication of telomeric G-quadruplex structures during the cell cycle.  相似文献   

20.
Guanine-rich DNA repeat sequences located at the terminal ends of chromosomal DNA can fold in a sequence-dependent manner into G-quadruplex structures, notably the terminal 150-200 nucleotides at the 3′ end, which occur as a single-stranded DNA overhang. The crystal structures of quadruplexes with two and four human telomeric repeats show an all-parallel-stranded topology that is readily capable of forming extended stacks of such quadruplex structures, with external TTA loops positioned to potentially interact with other macromolecules. This study reports on possible arrangements for these quadruplex dimers and tetramers, which can be formed from 8 or 16 telomeric DNA repeats, and on a methodology for modeling their interactions with small molecules. A series of computational methods including molecular dynamics, free energy calculations, and principal components analysis have been used to characterize the properties of these higher-order G-quadruplex dimers and tetramers with parallel-stranded topology. The results confirm the stability of the central G-tetrads, the individual quadruplexes, and the resulting multimers. Principal components analysis has been carried out to highlight the dominant motions in these G-quadruplex dimer and multimer structures. The TTA loop is the most flexible part of the model and the overall multimer quadruplex becoming more stable with the addition of further G-tetrads. The addition of a ligand to the model confirms the hypothesis that flat planar chromophores stabilize G-quadruplex structures by making them less flexible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号