首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Phenyl-pyrimidine-4-carboxamide analogs were identified as P2Y12 antagonists. Optimization of the carbon-linked or nitrogen-linked substituent at the 6-position of the pyrimidine ring provided compounds with excellent ex vivo potency in the platelet aggregation assay in human plasma. Compound 23u met the objectives for activity, selectivity and ADMET properties.  相似文献   

2.

Background

ADP is an important physiological agonist that induces integrin activation and platelet aggregation through its receptors P2Y1 (Gαq-coupled) and P2Y12 (Gαi-coupled). P2Y12 plays a critical role in platelet activation and thrombosis. Adenosine-based P2Y12 antagonists, 2-methylthioadenosine 5′-monophosphate triethylammonium salt hydrate (2MeSAMP) and Cangrelor (AR-C69931MX) have been widely used to demonstrate the role of P2Y12 in platelet function. Cangrelor is being evaluated in clinical trials of thrombotic diseases. However, a recent study reported that both 2MeSAMP and Cangrelor raise intra-platelet cAMP levels and inhibit platelet aggregation through a P2Y12-independent mechanism.

Methodology/Principal Findings

The present work, using P2Y12 deficient mice, sought to clarify previous conflicting reports and to elucidate the mechanisms by which 2MeSAMP and Cangrelor inhibit platelet activation and thrombosis. 2MeSAMP and Cangrelor inhibited aggregation and ATP release of wild-type but not P2Y12 deficient platelets. 2MeSAMP and Cangrelor neither raised intracellular cAMP concentrations nor induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in washed human or mouse platelets. Furthermore, unlike the activators (PGI2 and forskolin) of the cAMP pathway, 2MeSAMP and Cangrelor failed to inhibit Ca2+ mobilization, Akt phosphorylation, and Rap1b activation in P2Y12 deficient platelets. Importantly, while injection of Cangrelor inhibited thrombus formation in a FeCl3-induced thrombosis model in wild-type mice, it failed to affect thrombus formation in P2Y12 deficient mice.

Conclusions

These data together demonstrate that 2MeSAMP and Cangrelor inhibit platelet function through the P2Y12-dependent mechanism both in vitro and in vivo.  相似文献   

3.
Blockade of the P2Y1 receptor is important to the treatment of thrombosis with potentially improved safety margins compared with P2Y12 receptor antagonists. Investigation of a series of urea surrogates of the diaryl urea lead 3 led to the discovery of 2-amino-1,3,4-thiadiazoles in the 7-hydroxy-N-neopentyl spiropiperidine indolinyl series as potent P2Y1 receptor antagonists, among which compound 5a was the most potent and the first non-urea analog with platelet aggregation (PA) IC50 less than 0.5 μM with 10 μM ADP. Several 2-amino-1,3,4-thiadiazole analogs such as 5b and 5f had a more favorable pharmacokinetic profile, such as higher Ctrough, lower Cl, smaller Vdss, and similar bioavailability compared with 3.  相似文献   

4.
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.  相似文献   

5.
ADP receptors, P2Y1 and P2Y12 have been recognized as potential targets for antithrombotic drugs. A series of P2Y1 antagonists that contain 2-aminothiazoles as urea surrogates were discovered. Extensive SAR of the thiazole ring is described. The most potent compound 7j showed good P2Y1 binding (Ki = 12 nM), moderate antagonism of platelet aggregation (PA IC50 = 5.2 μM) and acceptable PK in rats.  相似文献   

6.
Suzuki T  Obara Y  Moriya T  Nakata H  Nakahata N 《FEBS letters》2011,585(24):3978-3984
A2A adenosine receptor (A2AR), P2Y1 receptor (P2Y1R) and P2Y12 receptor (P2Y12R) are predominantly expressed on human platelets. The individual role of each of these receptors in platelet aggregation has been actively reported. Previously, hetero-oligomerization between these three receptors has been shown to occur. Here, we show that Ca2+ signaling evoked by the P2Y1R agonist, 2-methylthioladenosine 5’ diphosphate (2MeSADP) was significantly inhibited by the A2AR antagonist (ZM241385 and SCH442416) and the P2Y12R antagonist (ARC69931MX) using HEK293T cells expressing the three receptors. It was confirmed that inhibition of P2Y1R signaling by A2AR and P2Y12R antagonists was indeed mediated through A2AR and P2Y12R using 1321N1 human astrocytoma cells which do not express P2Y receptors. We expect that intermolecular signal transduction and specific conformational changes occur among components of hetero-oligomers formed by these three receptors.  相似文献   

7.
Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets.  相似文献   

8.

Background

Diadenosine tetraphosphate (Ap4A), a constituent of platelet dense granules, and its P1,P4-dithio and/or P2,P3-chloromethylene analogs, inhibit adenosine diphosphate (ADP)-induced platelet aggregation. We recently reported that these compounds antagonize both platelet ADP receptors, P2Y1 and P2Y12. The most active of those analogs, diadenosine 5′,5″″-P1,P4-dithio-P2,P3-chloromethylenetetraphosphate, (compound 1), exists as a mixture of 4 stereoisomers.

Objective

To separate the stereoisomers of compound 1 and determine their effects on platelet aggregation, platelet P2Y1 and P2Y12 receptor antagonism, and their metabolism in human plasma.

Methods

We separated the 4 diastereomers of compound 1 by preparative reversed-phase chromatography, and studied their effect on ADP-induced platelet aggregation, P2Y1-mediated changes in cytosolic Ca2+, P2Y12-mediated changes in VASP phosphorylation, and metabolism in human plasma.

Results

The inhibition of ADP-induced human platelet aggregation and human platelet P2Y12 receptor, and stability in human plasma strongly depended on the stereo-configuration of the chiral P1- and P4-phosphorothioate groups, the SPSP diastereomer being the most potent inhibitor and completely resistant to degradation in plasma, and the RPRP diastereomer being the least potent inhibitor and with the lowest plasma stability. The inhibitory activity of SPRP diastereomers depended on the configuration of the pseudo-asymmetric carbon of the P2,P3-chloromethylene group, one of the configurations being significantly more active than the other. Their plasma stability did not differ significantly, being intermediate to that of the SPSP and the RPRP diastereomers.

Conclusions

The presently-described stereoisomers have utility for structural, mechanistic, and drug development studies of dual antagonists of platelet P2Y1 and P2Y12 receptors.  相似文献   

9.
ADP plays an integral role in the process of hemostasis by signaling through two platelet G-protein-coupled receptors, P2Y1 and P2Y12. The recent use of antagonists against these two receptors has contributed a substantial body of data characterizing the ADP signaling pathways in human platelets. Specifically, the results have indicated that although P2Y1 receptors are involved in the initiation of platelet aggregation, P2Y12 receptor activation appears to account for the bulk of the ADP-mediated effects. Based on this consideration, emphasis has been placed on the development of a new class of P2Y12 antagonists (separate from clopidogrel and ticlopidine) as an approach to the treatment of thromboembolic disorders. The present work examined the molecular mechanisms by which two of these widely used adenosine-based P2Y12 antagonists (2-methylthioadenosine 5′-monophosphate triethylammonium salt (2MeSAMP) and ARC69931MX), inhibit human platelet activation. It was found that both of these compounds raise platelet cAMP to levels that substantially inhibit platelet aggregation. Furthermore, the results demonstrated that this elevation of cAMP did not require Gi signaling or functional P2Y12 receptors but was mediated through activation of a separate G protein-coupled pathway, presumably involving Gs. However, additional experiments revealed that neither 2MeSAMP nor ARC69931MX (cangrelor) increased cAMP through activation of A2a, IP, DP, or EP2 receptors, which are known to couple to Gs. Collectively, these findings indicate that 2MeSAMP and ARC69931MX interact with an unidentified platelet G protein-coupled receptor that stimulates cAMP-mediated inhibition of platelet function. This inhibition is in addition to that derived from antagonism of P2Y12 receptors.Upon damage to the endothelial layer of the blood vessel wall, the underlying subendothelium is exposed to platelets in the blood, initiating a cascade of signaling events resulting in the transformation of “resting” platelets into “activated” platelets (1). One significant characteristic associated with these signaling events is the secretion of ADP from the platelet-dense granules (2). This released ADP acts to further amplify the platelet activation response by interacting with its G-protein-coupled receptors on the platelet surface, namely P2Y1 (coupled to Gq) and P2Y12 (coupled to Gi) (35). The consequence of platelet activation through ADP is a conformational change in the platelet membrane glycoprotein αIIbβ3 (6, 7), which then binds to fibrinogen present in the plasma. The binding of fibrinogen with αIIbβ3 on the surface of adjacent platelets results in fibrinogen-platelet cross-linking and the formation of a hemostatic plug at the site of vascular injury (8).Consequently, ADP is thought to play an integral role in the normal process of hemostasis. Of the two ADP-receptor signaling pathways in platelets, evidence has indicated that ADP-mediated P2Y12 signaling appears to play a more prominent role in platelet activation than ADP-mediated P2Y1 signaling (9, 10). For the most part, support for this notion derives from the use of the adenosine-based P2Y12 antagonists (i.e. 2MeSAMP4 and ARC69931MX), which have a much broader inhibitory profile than P2Y1 antagonists (e.g. A3P5P (adenosine-3′-phosphate-5′-phosphate) or MRS2179) (9). Thus, 2MeSAMP and ARC69931MX inhibit platelet aggregation in response to multiple agonists, such as thromboxane A2, collagen, thrombin, etc. (1113), whereas P2Y1 antagonists do not. On the other hand, this general requirement for P2Y12 signaling seems to be inconsistent with earlier reports indicating that activation of certain platelet receptors (e.g. thromboxane A2 receptor) can cause aggregation through ADP-independent mechanisms (14, 15). Based on this apparent inconsistency in the contribution of P2Y12 signaling to the overall platelet activation response, the present study investigated the possibility that the broad spectrum of inhibitory activity of this new generation of P2Y12 antagonists (i.e. MeSAMP and ARC69931MX) may derive from an elevation in platelet cAMP levels.Our data demonstrated that both 2MeSAMP and ARC69931MX do in fact significantly raise human platelet cAMP. Furthermore, this pharmacological effect is independent of P2Y12-Gi signaling and appears to proceed through activation of a separate Gs-coupled platelet receptor. Taken together, the results therefore indicate that these adenosine-based P2Y12 antagonists can produce their inhibition of platelet function through a cAMP-mediated mechanism.  相似文献   

10.
Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y1 and P2Y12 receptors, a P2Y14 receptor (GPR105) of unknown function, and anti-aggregatory A2A and A2B adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure–activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y1, P2Y12, and P2Y14 receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y12 receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y12 receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y1 receptor or the P2Y12 receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A2A AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A2A agonist CGS21680 and the P2Y1 receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.  相似文献   

11.
Extracellular ATP triggers changes in intracellular Ca2+, ion channel function, and membrane trafficking in adipocytes. The aim of the present study was to determine which P2 receptors might mediate the Ca2+ signaling and membrane trafficking responses to ATP in brown fat cells. RT-PCR was used to determine which P2 receptors are expressed in brown fat cells. Responses to nucleotide agonists and antagonists were characterized using fura-2 fluorescence imaging of Ca2+ responses, and FM 1-43 fluorescence imaging and membrane capacitance measurements to assess membrane trafficking. The pharmacology of the Ca2+ responses fits the properties of the P2Y receptors for which mRNA is expressed, but the agonist and antagonist sensitivity of the membrane-trafficking response was not consistent with any P2 receptor described to date. Brown adipocytes expressed mRNA for P2Y2, P2Y6, and P2Y12 metabotropic receptors and P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 ionotropic receptors. The agonists ATP, ADP, UTP, UDP and 2′, 3′-(benzoylbenzoyl) ATP (BzATP) increased intracellular Ca2+, while 100 μM suramin, pyridoxal-phosphate-6-azophenyl-2′ 4′-disulfonic acid (PPADS), or Reactive Blue 2 partially blocked Ca2+ responses. ATP, but not ADP, UTP, UDP or BzATP activated membrane trafficking. The membrane response could be blocked completely with 1 μM PPADS but not by the antagonist MRS2179. We conclude that multiple P2 receptors mediate the ATP responses of brown fat cells, and that membrane trafficking is regulated by a P2 receptor showing unusual properties.  相似文献   

12.
13.
The nucleotide receptors P2Y2 and P2Y4 are the most closely related G protein-coupled receptors (GPCRs) of the P2Y receptor (P2YR) family. Both subtypes couple to Gq proteins and are activated by the pyrimidine nucleotide UTP, but only P2Y2R is also activated by the purine nucleotide ATP. Agonists and antagonists of both receptor subtypes have potential as drugs e.g. for neurodegenerative and inflammatory diseases. So far, potent and selective, “drug-like” ligands for both receptors are scarce, but would be required for target validation and as lead structures for drug development. Structural information on the receptors is lacking since no X-ray structures or cryo-electron microscopy images are available. Thus, we performed receptor homology modeling and docking studies combined with mutagenesis experiments on both receptors to address the question how ligand binding selectivity for these closely related P2YR subtypes can be achieved. The orthosteric binding site of P2Y2R appeared to be more spacious than that of P2Y4R. Mutation of Y197 to alanine in P2Y4R resulted in a gain of ATP sensitivity. Anthraquinone-derived antagonists are likely to bind to the orthosteric or an allosteric site depending on their substitution pattern and the nature of the orthosteric binding site of the respective P2YR subtype. These insights into the architecture of P2Y2- and P2Y4Rs and their interactions with structurally diverse agonists and antagonist provide a solid basis for the future design of potent and selective ligands.  相似文献   

14.
A hit to lead process to identify reversible, orally available ADP receptor (P2Y12) antagonists lead compounds is described. High throughput screening afforded 1. Optimization of 1, using parallel synthesis methods, a methyl scan to identify promising regions for optimization, and exploratory SAR on these regions, provided 22 and 23. Compound 23 is an orally available, competitive reversible antagonist (KB?=?94?nM for inhibition of ADP-induced platelet aggregation). It exhibits high metabolic stability in human, rat and dog liver microsomes and is orally absorbed. Although plasma level after oral dosing of 22 and 23 to rats is low, reasonable levels were achieved to merit extensive lead optimization of this structural class.  相似文献   

15.
Extracellular nucleotides and their metabolites activate ionotropic P2X and metabotropic P2Y receptors on the surface of various types of cells. Here, we investigated the involvement of P2X and P2Y receptor-mediated signaling in TCR-dependent T cell activation. Murine T cells were activated by stimulation of TCR, and both CD25 expression and interleukin (IL)-2 production were observed in activated T cells. Ecto-nucleotidase apyrase and P2Y6 antagonist MRS2578 significantly blocked the increases of both CD25 expression and IL-2 production, and P2X7 antagonists A438079 and oxidized ATP inhibited IL-2 production rather than CD25 expression, suggesting the involvement of P2Y6 and P2X7 receptors in different processes of T cell activation. MRS2578 also blocked TCR-dependent elevation of cytosolic Ca2+ in T cells. The P2X7 and P2Y6 receptors were expressed in murine CD4 T cells. In conclusion, our results indicate that activation of P2Y6 and P2X7 receptors contributes to T cell activation via TCR.  相似文献   

16.
Polymer-assisted solution-phase (PASP) parallel library synthesis was used to discover a piperazinyl-glutamate-pyridine as a P2Y12 antagonist. Exploitation of this lead provided compounds with excellent inhibition of platelet aggregation as measured in a human platelet rich plasma (PRP) assay. Pharmacokinetic and physiochemical properties were optimized leading to compound (4S)-4-[({4-[4-(methoxymethyl)piperidin-1-yl]-6-phenylpyridin-2-yl}carbonyl)amino]-5-oxo-5-{4-[(pentyloxy)carbonyl]piperazin-1-yl}pentanoic acid 22J with good human PRP potency, selectivity, in vivo efficacy and oral bioavailability.  相似文献   

17.
A number of new amine scaffolds with good inhibitory activity in the ADP-induced platelet aggregation assay have been found to be potent antagonists of the P2Y1 receptor. SAR optimization led to the identification of isoindoline 3c and piperidine 4a which showed good in vitro binding and functional activities, as well as improved aqueous solubility. Among them, the piperidine 4a showed the best overall profile with favorable PK parameters.  相似文献   

18.
Structural and functional evolution of the P2Y12-like receptor group   总被引:1,自引:0,他引:1  
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.  相似文献   

19.
Urinary tract infections are commonly caused by α-hemolysin (HlyA)-producing Escherichia coli. In erythrocytes, the cytotoxic effect of HlyA is strongly amplified by P2X receptors, which are activated by extracellular ATP released from the cytosol of the erythrocytes. In renal epithelia, HlyA causes reversible [Ca2+]i oscillations, which trigger interleukin-6 (IL-6) and IL-8 release. We speculate that this effect is caused by HlyA-induced ATP release from the epithelial cells and successive P2 receptor activation. Here, we demonstrate that HlyA-induced [Ca2+]i oscillations in renal epithelia were completely prevented by scavenging extracellular ATP. In accordance, HlyA was unable to inflict any [Ca2+]i oscillations in 132-1N1 cells, which lack P2R completely. After transfecting these cells with the hP2Y2 receptor, HlyA readily triggered [Ca2+]i oscillations, which were abolished by P2 receptor antagonists. Moreover, HlyA-induced [Ca2+]i oscillations were markedly reduced in medullary thick ascending limbs isolated from P2Y2 receptor-deficient mice compared with wild type. Interestingly, the following HlyA-induced IL-6 release was absent in P2Y2 receptor-deficient mice. This suggests that HlyA induces ATP release from renal epithelia, which via P2Y2 receptors is the main mediator of HlyA-induced [Ca2+]i oscillations and IL-6 release. This supports the notion that ATP signaling occurs early during bacterial infection and is a key player in the further inflammatory response.  相似文献   

20.
A few naturally occurring N6-substituted adenosine derivatives (cytokinin ribosides) were investigated as inhibitors of platelet aggregation induced in vitro by collagen and their activity range was demonstrated (IC50: 6.77–141 μM). A docking study suggests that anti-aggregation activity of these compounds could involve an interaction with the P2Y12 receptor binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号