首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variotin (1) and three novel compounds, formosusin A (2), B (3), and C (4), were isolated from the cultures of the fungus Paecilomyces formosus, and their structures were determined by spectroscopic analyses. Compound 2 is (6Z,8E,10E)-variotin, a new cis-olefin analog of compound 1. Compound 2 selectively inhibited the activity of mammalian DNA polymerase β (pol β) in vitro, with an IC50 of 35.6 μM. By contrast, compounds 1, 3, and 4 did not influence the activity of pol β. These four compounds showed no effect on the activities of other 10 mammalian pols (i.e., pols α, γ, δ, ε, η, ι, κ, λ, and μ, and terminal deoxynucleotidyl transferase). These compounds also did not inhibit the activities of fish, insect, plant, and prokaryotic pols and other DNA metabolic enzymes tested. These results suggested that compound 2 could be a selective inhibitor of mammalian pol β. The compound 2-induced inhibition of rat pol β activity was competitive and non-competitive with respect to the DNA template–primer substrate and the dNTP substrate, respectively. On the basis of these results, the relationship between the three-dimensional structure and pol β inhibitory mechanism of compound 2 is discussed.  相似文献   

2.
Abasic (apurinic/apyrimidinic, AP) sites are the most common DNA lesions formed in cells, induce severe blocks to DNA replication, and are highly mutagenic. Human Y-family translesion DNA polymerases (pols) such as pols η, ι, κ, and REV1 have been suggested to play roles in replicative bypass across many DNA lesions where B-family replicative pols stall, but their individual catalytic functions in AP site bypass are not well understood. In this study, oligonucleotides containing a synthetic abasic lesion (tetrahydrofuran analogue) were compared for catalytic efficiency and base selectivity with human Y-family pols η, ι, κ, and REV1 and B-family pols α and δ. Pol η and pol δ/proliferating cell nuclear antigen (PCNA) copied past AP sites quite effectively and generated products ranging from one-base to full-length extension. Pol ι and REV1 readily incorporated one base opposite AP sites but then stopped. Pols κ and α were severely blocked at AP sites. Pol η preferentially inserted T and A; pol ι inserted T, G, and A; pol κ inserted C and A; REV1 preferentially inserted C opposite AP sites. The B-family pols α and δ/PCNA preferentially inserted A (85% and 58%, respectively) consonant with the A-rule hypothesis. Pols η and δ/PCNA were much more efficient in next-base extension, preferably from A positioned opposite an AP site, than pol κ. These results suggest that AP sites might be bypassed with moderate efficiency by single B- and Y-family pols or combinations, possibly by REV1 and pols ι, η, and δ/PCNA at the insertion step opposite the lesion and by pols η and δ/PCNA at the subsequent extension step. The patterns of the base preferences of human B-family and Y-family pols in both insertion and extension are pertinent to some of the mutagenesis events induced by AP lesions in human cells.  相似文献   

3.
The mutagenicity of an oxidized form of dGTP, 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (8-OH-dGTP), was examined using human 293T cells. Shuttle plasmid DNA containing the supF gene was first transfected into the cells, and then 8-OH-dGTP was introduced by means of osmotic pressure. The DNAs replicated in the cells were recovered and then transfected into Escherichia coli. 8-OH-dGTP induced A:T  C:G substitution mutations in the cells. The knock-downs of DNA polymerases η and ζ, and REV1 by siRNAs reduced the A:T  C:G substitution mutations, suggesting that these DNA polymerases are involved in the misincorporation of 8-OH-dGTP opposite A in human cells. In contrast, the knock-down of DNA polymerase ι did not affect the 8-OH-dGTP-induced mutations. The decrease in the induced mutation frequency was more evident by double knock-downs of DNA pols η plus ζ and REV1 plus DNA pol ζ (but not by that of DNA pol η plus REV1), suggesting that REV1-DNA pol η and DNA pol ζ work in different steps. These results indicate that specialized DNA polymerases are involved in the mutagenesis induced by the oxidized dGTP.  相似文献   

4.
Cholesterol hemisuccinate (compound 5), which consists of succinic acid esterified to the beta-hydroxyl group of cholesterol, selectively and strongly inhibited the activities of mammalian DNA polymerases (pols) such as pol beta, pol lambda, and terminal deoxynucleotidyltransferase (TdT), which are family X pols, in vitro, and the IC50 values were 2.9, 6.3, and 6.5 microM, respectively. The compound moderately suppressed the activities of other mammalian pols such as pol A (i.e., pol gamma), pol B (i.e., pols alpha, delta, and epsilon), and pol Y (i.e., pols iota, eta, and kappa) with 50% inhibition observed at concentrations of 131, 89.2-98.0, and 120-125 microM, respectively. The compound had no influence on the activities of plant pols alpha and beta, prokaryotic pols and other DNA metabolic enzymes tested. Since other cholesterol-related compounds such as cholesterol, cholesteryl chloride, cholesteryl bromide, cholesteryl acetate, and cholesteryl-5alpha, 6alpha-epoxide (compounds 1-4 and 6, respectively) did not influence the activities of any enzymes tested, the hemisuccinate group of compound 5 could be important for inhibition of the pol X family. Surface plasmon resonance analysis demonstrated that compound 5 bound selectively to the C-terminal 31 kDa domain of pol beta and pol lambda containing a pol beta-like region. On the basis of these results, the inhibitory mechanism of compound 5 on the pol X family was discussed.  相似文献   

5.
The present study was designed to investigate the anticancer activity of novel nine small peptides (compounds 19) derived from TT-232, a somatostatin structural analogue, by analyzing the inhibition of mammalian DNA polymerase (pol) and human cancer cell growth. Among the compounds tested, compounds 3 [tert-butyloxycarbonyl (Boc)-Tyr-Phe-1-naphthylamide], 4 (Boc-Tyr-Ile-1-naphthylamide), 5 (Boc-Tyr-Leu-1-naphthylamide) and 6 (Boc-Tyr-Val-1-naphthylamide) containing tyrosine (Tyr) but no carboxyl groups, selectively inhibited the activity of rat pol β, which is a DNA repair-related pol. Compounds 36 strongly inhibited the growth of human colon carcinoma HCT116 p53+/+ cells. The influence of compounds 19 on HCT116 p53?/? cell growth was similar to that observed for HCT116 p53+/+ cells. These results suggest that the cancer cell growth suppression induced by these compounds might be related to their inhibition of pol. Compound 4 was the strongest inhibitor of pol β and cancer cell growth among the nine compounds tested. This compound specifically inhibited rat pol β activity, but had no effect on the other 10 mammalian pols investigated. Compound 4 combined with methyl methane sulfonate (MMS) treatment synergistically suppressed HCT116 p53?/? cell growth compared with MMS alone. This compound also induced apoptosis in HCT116 cells with or without p53. From these results, the influence of compound 4, a specific pol β inhibitor, on the relationship between DNA repair and cancer cell growth is discussed.  相似文献   

6.
7.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent human carcinogen. Metabolic activation of NNK generates a number of DNA adducts including O2-methylthymidine (O2-Me-dT) and O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dT). To investigate the biological effects of these O2-alkylthymidines in humans, we have replicated plasmids containing a site-specifically incorporated O2-Me-dT or O2-POB-dT in human embryonic kidney 293T (HEK293T) cells. The bulkier O2-POB-dT exhibited high genotoxicity and only 26% translesion synthesis (TLS) occurred, while O2-Me-dT was less genotoxic and allowed 55% TLS. However, O2-Me-dT was 20% more mutagenic (mutation frequency (MF) 64%) compared to O2-POB-dT (MF 53%) in HEK293T cells. The major type of mutations in each case was targeted T  A transversions (56% and 47%, respectively, for O2-Me-dT and O2-POB-dT). Both lesions induced a much lower frequency of T  G, the dominant mutation in bacteria. siRNA knockdown of the TLS polymerases (pols) indicated that pol η, pol ζ, and Rev1 are involved in the lesion bypass of O2-Me-dT and O2-POB-dT as the TLS efficiency decreased with knockdown of each pol. In contrast, MF of O2-Me-dT was decreased in pol ζ and Rev1 knockdown cells by 24% and 25%, respectively, while for O2-POB-dT, it was decreased by 44% in pol ζ knockdown cells, indicating that these TLS pols are critical for mutagenesis. Additional decrease in both TLS efficiency and MF was observed in cells deficient in pol ζ plus other Y-family pols. This study provided important mechanistic details on how these lesions are bypassed in human cells in both error-free and error-prone manner.  相似文献   

8.
Multi-target compounds where more than one functional activity is incorporated into the same molecule may have advantages in treating disease states. Selective serotonin re-uptake inhibitors (SSRIs)a (i.e., (R)- and (S)-norfluoxetine) were chemically linked to a PDE4 inhibitor via a five carbon bridge. The new dual PDE4 inhibitor/SSRIs (i.e., (R)-8 and (S)-8) showed moderately potent but highly selective serotonin re-uptake inhibition (IC50 values of 173 and 42 nM, respectively) in vitro. The dual PDE4 inhibitor/SSRIs (R)-8 and (S)-8 also inhibited PDE4D2 (i.e., Ki values of 106 and 253 nM, respectively). Due to the synergistic functional activity, PDE4 inhibitor/SSRIs may be effective in treating diseases such as depression.  相似文献   

9.
Starting from a known non-specific agonist (1) of nicotinic acetylcholine receptors (nAChRs), rationally guided structural-based design resulted in the discovery of a small series of 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridines (3a3e) incorporating a phenyl ring off the pyridine core of 1. The compounds were synthesized via successive Suzuki couplings on a suitably functionalized pyridine starting monomer 4 to append phenyl and pyridyl substituents off the 3- and 5-positions, respectively, and then subsequent modifications were made on the flanking pyridyl ring to provide target compounds. Compound 3a is a novel antagonist, which is highly selective for α3β4 nAChR (Ki = 123 nM) over the α4β2 and α7 receptors.  相似文献   

10.
Compounds possessing more than one functional activity incorporated into the same molecule may have advantages in treating complex disease states. Balanced serotonin/norepinephrine reuptake inhibitors (SNRIs) (i.e., (R)- and (S)-norduloxetine) were chemically linked to a PDE4 inhibitor via a five carbon bridge. The new dual SNRI/PDE4 inhibitors (i.e., (R)-15 and (S)-15) showed moderately potent serotonin reuptake inhibition (IC50 values of 442 and 404 nM, respectively) but low reuptake inhibition of norepinephrine (IC50 values of 2097 and 2190 nM, respectively) in vitro. The dual SNRI/PDE4 inhibitors (i.e., (R)-15 and (S)-15) also inhibited PDE4D2 (i.e., Ki values of 23 and 45 nM, respectively). Due to their synergistic functional activity, SNRI/PDE4 inhibitors may be effective in treating diseases such as depression.  相似文献   

11.
12.
A series of arylsulfonamide derivatives of (aryloxy)ethyl pyrrolidines and piperidines was synthesized to develop new α1-adrenoceptor antagonists with uroselective profile. Biological evaluation for α1- and α2-adrenorecepor showed that tested compounds 1337 displayed high-to-moderate affinity for the α1-adrenoceptor (Ki = 34–348 nM) and moderate selectivity over α2-receptor subtype. Compounds with highest affinity and selectivity for α1-adrenoceptor were evaluated in vitro for their intrinsic activity toward α1A- and α1B-adrenoceptor subtypes. All compounds behaved as antagonists at both α1-adrenoceptor subtypes, displaying 2- to 6-fold functional preference to α1A-subtype. Among them, N-{1-[2-(2-methoxyphenoxy)ethyl]piperidin-4-yl}isoquinoline-4-sulfonamide (25) and 3-chloro-2-fluoro-N-{[1-(2-(2-isopropoxyphenoxy)ethyl)piperidin-4-yl]methyl}benzene sulfonamide (34) displayed the highest preference to α1A-adrenoceptor. Finally, compounds 25 and 34 (2–5 mg/kg, iv), in contrast to tamsulosin (1–2 mg/kg, iv), did not significantly decrease systolic and diastolic blood pressure in normotensive anesthetized rats to determine their influence on blood pressure.  相似文献   

13.
Novel pyrano[4,3-b]pyran-5(4H)-one based small molecules were designed as potential inhibitors of sirtuins (i.e., yeast sir2, a homolog of human SIRT1). Elegant synthesis of these compounds was performed via a multi-step sequence consisting of MCR, Sandmeyer type iodination, Sonogashira type coupling followed by iodocyclization and then Pd-mediated various C–C bond forming reactions. The overall strategy involved the construction of a pyran ring followed by the fused pyranone moiety and subsequent functionalization at C-8 position of the resultant core pyrano[4,3-b]pyran-5(4H)-one framework. The crystal structure analysis of a representative iodolactonized product (6d) is presented. Some of the synthesized compounds showed promising inhibitory activities when tested against yeast sir2 in vitro. The compound 6g showed dose dependent inhibition (IC50 = 78.05 μM) of yeast sir2 and good interactions with this protein in silico.  相似文献   

14.
Four new 4-substituted coumarins, incrassamarin A (1), B (2), C (3) and D (4) with (7S,8S)-7,8-dihydro-5-hydroxy-7,8-dimethyl-4-propyl-2H,6H-benzo[1,2-b;5,4-b’]dipyran-2,6-dione (5), friedelin, carpachromene, amentoflavone, epiafzelechin and L-quercitrin were isolated from the barks and leaves of Calophyllum incrassatum (Guttiferae). The compounds were isolated and purified by size-exclusion recycling HPLC and column chromatographic techniques. The structures of the compounds were determined by spectroscopic means. The compounds were tested for their cytotoxic activity towards MCF-7 and A-549 cell lines and α-glucosidase enzymatic inhibitory activity. Compound (1) displayed cytotoxic activity against A-549 cell lines with IC50 87.71 μg/mL and showed inhibition towards α-glucosidase enzymatic activity with IC50 93.25 μM. This is the first report on the isolation of phytochemicals from the barks and leaves of C. incrassatum and their bioactivities.  相似文献   

15.
A series of 6-hydroxyaurones and their analogues have been synthesized and evaluated for their in vitro α-glucosidase inhibitory and glucose consumption-promoting activity. These compounds exhibited varying degrees of α-glucosidase inhibitory activity, 11 of them showing higher potency than that of the control standard acarbose (IC50 = 50.30 μM). Surprisingly, analogues devoid of a substituent at C-2 but having an aryl group at C-5 were found to be highly active (e.g., 7f, IC50 = 9.88 μM). Docking analysis substantiated these findings. The kinetic analysis of compound 7f, the most potent α-glucosidase inhibitor of this study, revealed that it inhibited α-glucosidase in an irreversible and mixed competitive mode. In addition, compounds 7f and 10c exhibited significant glucose consumption promoting activity at 1 μM.  相似文献   

16.
Betulinic acid (BA) is a naturally occurring lupane-type triterpene which exhibits a variety of biological activities including potent cytotoxic properties. On the basis of the structural similarity to BA, two lupane derivatives namely lup-20(29)-ene-3β,30-diol (1) and lup-20(29)-ene-3β,28-diol (2), along with two friedelane derivatives, namely friedelan-3-one (3) and friedelan-3β-ol (4), isolated from the Brazilian plant Maytenus rigida, have been evaluated for their anti-proliferative effect. Similarly to BA, compounds 1 and 3 at 1 μM concentration significantly inhibited the VEGF-induced Kaposi's sarcoma (KS) cell proliferation by 50%. In contrast, this effect was not found in control endothelial cells (EC).Moreover, compounds 1 and 3 showed a dose-dependent effect on the apoptotic cell death, as detected by FACS analysis and caspase-3 assay. Specifically, at 10 μM concentration, apoptosis was significantly induced (from 45% to 55% of hypodiploid cells vs control cells) and showed the same potency order observed for the anti-proliferative effect at 1 μM, i.e., compound 3 > BA > compound 1.Taking into account the interest given rise by BA as anticancer agent, the comparable anti-proliferative activity shown by compounds 1 and 3 and BA, can give an impulse to further investigate lupane and friedelane derivatives as cytotoxic agents.  相似文献   

17.
18.
Remarkable qualitative and quantitative differences in non-glycosylated triterpenoid profiles of twelve Dioscorea spp. leaves were demonstrated with the use of GC–MS/FID analysis. The total content of tetracyclic triterpenoids and their esters ranged from 397 μg/g of dry leaf weight in D. bulbifera to 762 μg/g d.w. in D. discolor and 777 μg/g d.w. in D. alata. Three main phytosterols, i.e. campesterol (1), sitosterol (2) and stigmasterol (3) were found in extracts from all analyzed species in total amount ranging from 316 μg/g in D. bulbifera to 676 μg/g of dry leaf weight in D. hispida, with either sitosterol (2) or stigmasterol (3) as predominant in the profile. Extracts from D. hispida and D. purpurea leaves were distinguished from the others by particularly high amount of campesterol (1). In the majority of the species, except for D. caucasica, other tetracyclic triterpenoids were found: cycloartanol (4), 24-methylenecycloartanol (5) and cycloeucalenol (6). Less common steroids, stigmastan-3-en-6β-ol (7) and ergosta-7,22-dien-3β-ol (8) were detected in D. japonica. The significant content (992 μg/g) of pentacyclic triterpenoids of ursane, oleanane, taraxastane and taraxerene (friedooleanane)-type carbon skeletons, i.e. α-amyrin (9), β-amyrin (10), taraxasterol (11) and taraxerol (12), respectively, was found in D. caucasica. The obtained results supplement the knowledge of biochemical diversity of Dioscorea genus.  相似文献   

19.
One new xanthone, caroxanthone (1) together with six known xanthones, 4-prenyl-2-(3,7-dimethyl-2,6-octadienyl)-1,3,5,8-tetrahydroxyxanthone (2), smeathxanthone A (3), gartanin (4), euxanthone (5), 8-hydroxycudraxanthone G (6) and morusignin I (7) were isolated from the stem bark of Garcinia nobilis. The structures were determined by 1D- and 2D-NMR techniques. All these compounds were tested for anti-glycation, α-glucosidase and α-chymotrypsin activities. Some of them exhibited strong to moderate α-glucosidase activities, while none of them inhibited α-chymotrypsin. Compounds 6 and 7 were found to be modest α-glucosidase inhibitors with IC50 values of 76 μM and 84 μM, respectively.  相似文献   

20.
Mispyric acid is a novel natural triterpene dicarboxylic acid which has inhibitory activity against DNA polymerase beta (pol beta) isolated from the plant, Mischocarpus pyriformis. In this report, we examine the selectivity of the inhibitory activity against mammalian pols and the mode of inhibition in vitro. Natural mispyric acid (compound 1) inhibited the activities of all the mammalian pols tested (pol alpha, beta, gamma, delta and epsilon) with an IC50 value in the range of 3.6-44.5 microM. The inhibition was strongest for pol gamma among these five pols. The enantiomer of mispyric acid (compound 2, ent-mispyric acid) had similar effects to those of the natural compound. However, derivatives of compounds 1 and 2 with hydroxyl groups instead of carboxyl groups (i.e., compounds 3 and 4, respectively) exhibited no inhibitory effect on mammalian pols. The moiety of two carboxylic acids in mispyric acid was important for the inhibition of pols, and the stereoisomers of mispyric acid had no inhibitory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号