首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New dialkylimidazole based sterol 14α-demethylase inhibitors were prepared and tested as potential anti-Trypanosoma cruzi agents. Previous studies had identified compound 2 as the most potent and selective inhibitor against parasite cultures. In addition, animal studies had demonstrated that compound 2 is highly efficacious in the acute model of the disease. However, compound 2 has a high molecular weight and high hydrophobicity, issues addressed here. Systematic modifications were carried out at four positions on the scaffold and several inhibitors were identified which are highly potent (EC50 <1 nM) against T. cruzi in culture. The halogenated derivatives 36j, 36k, and 36p, display excellent activity against T. cruzi amastigotes, with reduced molecular weight and lipophilicity, and exhibit suitable physicochemical properties for an oral drug candidate.  相似文献   

2.
We have previously shown that 3-nitro-1H-1,2,4-triazole-based amines demonstrate significant trypanocidal activity, in particular against Trypanosoma cruzi, the causative parasite of Chagas disease. In the present work we further expanded our research by evaluating in vitro the trypanocidal activity of nitrotriazole-based piperazines and nitrotriazole-based 2-amino-1,3-benzothiazoles to establish additional SARs. All nitrotriazole-based derivatives were active or moderately active against T. cruzi; however two of them did not fulfill the selectivity criteria. Five derivatives were active or moderately active against Trypanosoma brucei rhodesiense while one derivative was moderately active against Leishmania donovani. Active compounds against T. cruzi demonstrated selectivity indexes (toxicity to host cells/toxicity to T. cruzi amastigotes) from 117 to 1725 and 12 of 13 compounds were up to 39-fold more potent than the reference compound benznidazole. Detailed SARs are discussed.  相似文献   

3.
A series of twenty phthalazinyl-hydrazones were synthesized and tested as potential anti-Trypanosoma cruzi agents. The phthalazines containing 5-nitroheteroaryl moiety 3l and 3m displayed an excellent in vitro antitrypanosomal profile, exhibiting low micromolar EC50 values against proliferative epimastigote of T. cruzi and minimal toxicity toward Vero cells. These derivatives were more potent than the reference drug benznidazole against the epimastigote stage of the parasite. Structure-property analysis indicates that the highly conjugated 5-nitroheteroaryl moiety connected to the phthalazin scaffold play an important role in the antichagasic activity of these phthalazines. The decrease on the mitochondrial dehydrogenase activity and significant ROS production found for the parasites treated with 3l and 3m suggest that both nitro-derivatives can act through an oxidative stress mechanism.  相似文献   

4.
Chagas’ disease is a parasitic infection caused by Trypanosoma cruzi that is still treated by old and toxic drugs. In the search for novel alternatives, natural sources are an important source for new drug prototypes against T. cruzi to further structural exploitation. A set of natural-based compounds (LINS03) was designed, showing promising antitrypanosoma activity and low cytotoxicity to host cells. In this paper, nine novel LINS03 derivatives were evaluated against T. cruzi trypomastigotes and amastigotes. The selectivity was assessed through cytotoxicity assays using NCTC mammalian cells and calculating the CC50/IC50 ratio. The results showed that compounds 2d and 4c are noteworthy, due their high activity against amastigotes (IC50 13.9 and 5.8 µM) and low cytotoxicity (CC50 107.7 µM and >200 µM, respectively). These compounds did not showed alteration on plasma membrane permeability in a Sytox green model. SAR analysis suggested an ideal balance between hydrosolubility and lipophilicity is necessary to improve the activity, and that insertion of a meta-substituent is detrimental to the activity of the amine derivatives but not to the neutral derivatives, suggesting different mechanisms of actions. The results presented herein are valuable for designing novel compounds with improved activity and selectivity to be applied in future studies.  相似文献   

5.
Kierszenbaum F., Lima M. F. and Wirth J. J. 1985. Effects of antiserum to Trypanosoma cruzi on the uptake and rate of killing of vector-borne, metacyclic forms of the parasite by macrophages. International Journal for Parasitology15: 409–413. The contribution of phagocytic function to host defense against infection with metacyclic forms of Trypanosoma cruzi isolated from insect vectors was investigated in mice passively transferred with anti-T. cruzi serum. The protective effect resulting from the passive transfers was significantly reduced by administration of either silica or cobra venom factor (CVF). A more pronounced curtailment of the protective effect was seen when both silica and CVF were administered to the mice. This effect was greater than that calculated by adding the effects produced by silica and CVF alone. In in vitro experiments, presence of anti-T. cruzi antibodies enhanced the capacity of mouse macrophages to take up the metacyclic organisms and increased the proportion of macrophages associating with the parasites. Increased macrophage-parasite association was also seen when either the flagellates or the macrophages were preincubated with the antiserum. Antibody-treated metacyclic forms of T. cruzi were more rapidly cleared by untreated macrophages than parasites pretreated with normal mouse serum. These results support a role for macrophages in host defense against the form of T. cruzi responsible for natural infections and emphasize the role played by anti-T. cruzi antibodies. The combined effect of the silica and CVF treatments suggests that C activity may contribute to the protective action of antibodies through its opsonic properties, though a concomitant role for C-dependent immune lysis cannot be ruled out. These results highlight the protective role of antibodymediated mechanisms against infection with the form of T. cruzi responsible for natural infections.  相似文献   

6.
Trypanosoma cruzi (T. cruzi) is the parasite that causes Chagas disease. Nifurtimox is the most used drug against the T. cruzi, this drug increases intermediaries nitro group, being mainly responsible for the high toxicity component, for this reason it is important to study new organic compounds and thus improve therapeutic strategies against Chagas disease. The electronic effects of ferrocenyl and cyrhetrenyl fragments were investigated by DFT calculation. A close correlation was found between HOMO–LUMO gap of nitro radical NO 2 ? with the experimental reduction potential found for nitro group and IC50 of two forms the T. cruzi (epimastigote and trypomastigote). The IC50 on human hepatoma cells is higher for both compounds compared to IC50 demonstrated in the two forms the T. cruzi, and additionally show reactive oxygen species release. The information obtained in this paper could generate two new drugs with anti-T. cruzi activity, but additional studies are needed.  相似文献   

7.
A scaffold hopping exercise undertaken to expand the structural diversity of the fenarimol series of anti-Trypanosoma cruzi (T. cruzi) compounds led to preparation of simple 1-[phenyl(pyridin-3-yl)methyl]piperazinyl analogues of fenarimol which were investigated for their ability to inhibit T. cruzi in vitro in a whole organism assay. A range of compounds bearing amide, sulfonamide, carbamate/carbonate and aryl moieties exhibited low nM activities and two analogues were further studied for in vivo efficacy in a mouse model of T. cruzi infection. One compound, the citrate salt of 37, was efficacious in a mouse model of acute T. cruzi infection after once daily oral dosing at 20, 50 and 100 mg/kg for 5 days.  相似文献   

8.
Acute infection with Trypanosoma cruzi results in intense myocarditis, which progresses to a chronic, asymptomatic indeterminate form. The evolution toward this chronic cardiac form occurs in approximately 30% of all cases of T. cruzi infection. Suppression of delayed type hypersensitivity (DTH) has been proposed as a potential explanation of the indeterminate form. We investigated the effect of cyclophosphamide (CYCL) treatment on the regulatory mechanism of DTH and the participation of heart interstitial dendritic cells (IDCs) in this process using BALB/c mice chronically infected with T. cruzi. One group was treated with CYCL (20 mg/kg body weight) for one month. A DTH skin test was performed by intradermal injection of T. cruzi antigen (3 mg/mL) in the hind-footpad and measured the skin thickness after 24 h, 48 h and 72 h. The skin test revealed increased thickness in antigen-injected footpads, which was more evident in the mice treated with CYCL than in those mice that did not receive treatment. The thickened regions were characterised by perivascular infiltrates and areas of necrosis. Intense lesions of the myocardium were present in three/16 cases and included large areas of necrosis. Morphometric evaluation of lymphocytes showed a predominance of TCD8 cells. Heart IDCs were immunolabelled with specific antibodies (CD11b and CD11c) and T. cruzi antigens were detected using a specific anti-T. cruzi antibody. Identification of T. cruzi antigens, sequestered in these cells using specific anti-T. cruzi antibodies was done, showing a significant increase in the number of these cells in treated mice. These results indicate that IDCs participate in the regulatory mechanisms of DTH response to T. cruzi infection.  相似文献   

9.
A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds.  相似文献   

10.
Novel isothiocyanate derivatives were synthesized starting from noscapine, bile acids, amino acids, and some aromatic compounds. Antiparasitic activities of the synthesized derivatives were tested against four unicellular protozoa, i.e., Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Interestingly, seven isothiocyanate analogues displayed promising antiparasitic activity against Leishmania donovani with IC50 values between 0.4 and 1.0 µM and selectivity index (SI) ranged from 7.8 to 18.4, comparable to the standard drug miltefosine (IC50 = 0.7 μM). Compound 7h demonstrated the best antileishmanial activity with an IC50 value of 0.4 µM. Seven products exhibited inhibition activity against T. brucei rhodesiense with IC50s below 2.0 μM and SI between 2.7 and 29.3. Four primary amine derivatives of noscapine and five isothiocyanate derivatives exhibited antiplasmodial activity with IC50s in the range of 1.1–2.7 µM and SI values between 1.1 and 14.5. The isothiocyanate derivative 7c showed against T. cruzi with an IC50 value of 1.9 µM and SI 4. Molecular docking and ADMET studies were performed to investigate the interaction between active ligands and T. brucei trypanothione reductase active site. The docking studies showed significant binding affinity of noscapine derivatives to enzyme active site and good compatibility with experimental data.  相似文献   

11.
Sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors targeting the α-class enzyme from the protozoan pathogen Trypanosoma cruzi, responsible of Chagas disease, were recently reported. Although many such derivatives showed low nanomolar activity in vitro, they were inefficient anti-T. cruzi agents in vivo. Here, we show that by formulating such sulfonamides as nanoemulsions in clove (Eugenia caryophyllus) oil, highly efficient anti-protozoan effects are observed against two different strains of T. cruzi. These effects are probably due to an enhanced permeation of the enzyme inhibitor through the nanoemulsion formulation, interfering in this way with the life cycle of the pathogen either by inhibiting pH regulation or carboxylating reactions in which bicarbonate/CO2 are involved. This type of formulation of sulfonamides with T. cruzi CA inhibitory effects may lead to novel therapeutic approaches against this orphan disease.  相似文献   

12.
Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas’ disease. We have undertaken a detailed structure–activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme–ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60–70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.  相似文献   

13.
The 2-acylamino-5-nitro-1,3-thiazole derivatives (114) were prepared using a one step reaction. All compounds were tested in vitro against four neglected protozoan parasites (Giardia intestinalis, Trichomonas vaginalis, Leishmania amazonensis and Trypanosoma cruzi). Acetamide (9), valeroylamide (10), benzamide (12), methylcarbamate (13) and ethyloxamate (14) derivatives were the most active compounds against G. intestinalis and T. vaginalis, showing nanomolar inhibition. Compound 13 (IC50 = 10 nM), was 536-times more active than metronidazole, and 121-fold more effective than nitazoxanide against G. intestinalis. Compound 14 was 29-times more active than metronidazole and 6.5-fold more potent than nitazoxanide against T. vaginalis. Ureic derivatives 2, 3 and 5 showed moderate activity against L. amazonensis. None of them were active against T. cruzi. Ligand efficiency indexes analysis revealed higher intrinsic quality of the most active 2-acylamino derivatives than nitazoxanide and metronidazole. In silico toxicity profile was also computed for the most active compounds. A very low in vitro mammalian cytotoxicity was obtained for 13 and 14, showing selectivity indexes (SI) of 246,300 and 141,500, respectively. Nitazoxanide showed an excellent leishmanicidal and trypanocidal effect, repurposing this drug as potential new antikinetoplastid parasite compound  相似文献   

14.
The protozoan Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that afflicts approximately 8 million people in Latin America. Diagnosis of chronic Chagas disease is currently based on serological tests because this condition is usually characterized by high anti-T. cruzi IgG titers and low parasitemia. The antigens used in these assays may have low specificity due to cross reactivity with antigens from related parasite infections, such as leishmaniasis, and low sensitivity caused by the high polymorphism among T. cruzi strains. Therefore, the identification of new T. cruzi-specific antigens that are conserved among the various parasite discrete typing units (DTUs) is still required. In the present study, we have explored the hybrid nature of the T. cruzi CL Brener strain using a broad genome screening approach to select new T. cruzi antigens that are conserved among the different parasite DTUs and that are absent in other trypanosomatid species. Peptide arrays containing the conserved antigens with the highest epitope prediction scores were synthesized, and the reactivity of the peptides were tested by immunoblot using sera from C57BL/6 mice chronically infected with T. cruzi strains from the TcI, TcII or TcVI DTU. The two T. cruzi proteins that contained the most promising peptides were expressed as recombinant proteins and tested in ELISA experiments with sera from chagasic patients with distinct clinical manifestations: those infected with T. cruzi from different DTUs and those with cutaneous or visceral leishmaniasis. These proteins, named rTc_11623.20 and rTc_N_10421.310, exhibited 94.83 and 89.66% sensitivity, 98.2 and 94.6% specificity, respectively, and a pool of these 2 proteins exhibited 96.55% sensitivity and 98.18% specificity. This work led to the identification of two new antigens with great potential application in the diagnosis of chronic Chagas disease.  相似文献   

15.
In vitro metabolism of furazolidone (N-(5-nitro-2-furfuryliden)-3-amino-2-oxazolidone) was investigated by using milk xanthine oxidase and rat liver 9000g supernatant. As a result, a new type of reduction product was isolated as one of the main metabolites from the incubation mixture and it was tentatively identified as 2,3-dihydro-3-cyanomethyl-2-hydroxyl-5-nitro-1a, 2-di(2-oxo-oxazolidin-3-yl)iminomethyl-furo[2,3- b]furan. In addition, the present study demonstrated the formation of N-(5-amino-2-furfurylidene)-3-amino-2-oxazolidone as a minor metabolite of nitrofuran in a milk xanthine oxidase system. The aminofuran derivative was easily degraded by milk xanthine oxidase under aerobic, but not anaerobic, conditions. The degradation appears to be due to superoxide anion radicals, hydroxyl radicals, and/or singlet oxygen, which are produced in this enzyme system.  相似文献   

16.
Trypanosoma cruzi is the agent of Chagas disease, an infection that affects around 8 million people worldwide. The search for new anti-T. cruzi drugs are relevant, mainly because the treatment of this disease is limited to two drugs. The objective of this study was to investigate the trypanocidal and cytotoxic activity and elucidate the chemical profile of extracts from the roots of the Lonchocarpus cultratus. Roots from L. cultratus were submitted to successive extractions with hexane, dichloromethane, and methanol, resulting in LCH, LCD, and LCM extracts, respectively. Characterization of extracts was done using 1H-RMN, 13C-RMN, CC and TLC. Treatment of T. cruzi forms (epimastigotes, trypomastigotes, and amastigotes) with crescent concentrations of LCH, LCD, and LCM was done for 72, 48, and 48 h, respectively. After this, the percentage of inhibition and IC50/LC50 were calculated. Benznidazole was used as a positive control. Murine macrophages were treated with different concentrations of both extracts for 48 h, and after, the cellular viability was determined by the MTT method and CC50 was calculated. The chalcones derricin and lonchocarpine were identified in the hexane extract, and for the first time in the genus Lonchocarpus, the presence of a dihydrolonchocarpine derivative was observed. Other chalcones such as isocordoin and erioschalcone B were detected in the dichloromethane extract. The dichloromethane extract showed higher activity against all tested forms of T. cruzi than the other two extracts, with IC50 values of 10.98, 2.42, and 0.83 µg/mL, respectively; these values are very close to those of benznidazole. Although the dichloromethane extract presented a cytotoxic effect against mammalian cells, it showed selectivity against amastigotes. The methanolic extract showed the lowest anti-T. cruzi activity but was non-toxic to peritoneal murine macrophages. Thus, the genus Lonchocarpus had demonstrated in the past action against epimastigotes forms of T. cruzi but is the first time that the activity against infective forms is showed, which leading to further studies with in vivo tests.  相似文献   

17.
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure–activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5ah and 6ah. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 ± 2.8 and 3.5 ± 1.8 μM for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 ± 2.8 μM. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection.  相似文献   

18.
In this study, we designed and synthesized a series of thiophen-2-iminothiazolidine derivatives from thiophen-2-thioureic with good anti-Trypanosoma cruzi activity. Several of the final compounds displayed remarkable trypanocidal activity. The ability of the new compounds to inhibit the activity of the enzyme cruzain, the major cysteine protease of T. cruzi, was also explored. The compounds 3b, 4b, 8b and 8c were the most active derivatives against amastigote form, with significant IC50 values between 9.7 and 6.03 μM. The 8c derivative showed the highest potency against cruzain (IC50 = 2.4 μM). Molecular docking study showed that this compound can interact with subsites S1 and S2 simultaneously, and the negative values for the theoretical energy binding (Eb = −7.39 kcal·mol−1) indicates interaction (via dipole–dipole) between the hybridized sulfur sp3 atom at the thiazolidine ring and Gly66. Finally, the results suggest that the thiophen-2-iminothiazolidines synthesized are important lead compounds for the continuing battle against Chagas disease.  相似文献   

19.
《Phytomedicine》2015,22(11):969-974
BackgroundThe current treatment of Chagas disease, endemic in Latin America and emerging in several countries, is limited by the frequent side effects and variable efficacy of benznidazole. Natural products are an important source for the search for new drugs.Aim/hypothesisConsidering the great potential of natural products as antiparasitic agents, we investigated the anti-Trypanosoma cruzi activity of a concentrated ethanolic extract of Physalis angulata (EEPA).MethodsCytotoxicity to mammalian cells was determined using mouse peritoneal macrophages. The antiparasitic activity was evaluated against axenic epimastigote and bloodstream trypomastigote forms of T. cruzi, and against amastigote forms using T. cruzi-infected macrophages. Cell death mechanism was determined in trypomastigotes by flow cytometry analysis after annexin V and propidium iodide staining. The efficacy of EEPA was examined in vivo in an acute model of infection by monitoring blood parasitaemia and survival rate 30 days after treatment. The effect against trypomastigotes of EEPA and benznidazole acting in combination was evaluated.ResultsEEPA effectively inhibits the epimastigote growth (IC50 2.9 ± 0.1 µM) and reduces bloodstream trypomastigote viability (EC50 1.7 ± 0.5 µM). It causes parasite cell death by necrosis. EEPA impairs parasite infectivity as well as amastigote development in concentrations noncytotoxic to mammalian cells. In mice acutely-infected with T. cruzi, EEPA reduced the blood parasitaemia in 72.7%. When combined with benznidazole, EEPA showed a synergistic anti-T. cruzi activity, displaying CI values of 0.8 ± 0.07 at EC50 and 0.83 ± 0.1 at EC90.ConclusionEEPA has antiparasitic activity against T. cruzi, causing cell death by necrosis and showing synergistic activity with benznidazole. These findings were reinforced by the observed efficacy of EEPA in reducing parasite load in T. cruzi-mice. Therefore, this represents an important source of antiparasitic natural products.  相似文献   

20.
New 5-nitroindazole derivatives were developed and their antichagasic properties studied. Eight compounds (14–18, 20, 26 and 28) displayed remarkable in vitro activities against Trypanosoma cruzi (T. cruzi). Its unspecific cytotoxicity against macrophages was evaluated being not toxic at a concentration at least twice that of T. cruzi IC50, for some derivatives. The electrochemical studies, parasite respiration studies and ESR experiment showed that 5-nitroindazole derivatives not be able to yield a redox cycling with molecular oxygen such as occurs with nifurtimox (Nfx). The study on the mechanism of action proves to be related to the production of reduced species of the nitro moiety similar to that observed with benznidazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号