首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
光能利用率(LUE)是陆地生态系统总初级生产力(GPP)估算的一个重要参数。LUE的准确估算对于在区域甚至全球尺度上使用LUE模型估算GPP是非常重要的。一个基于通量塔的观测视场与通量观测足迹在时空上相匹配的自动多角度遥感平台为LUE在站点尺度上的准确估算提供了一个好方法。该文基于通量塔涡度相关(EC)和自动多角度高光谱连续观测获取的连续30 min的数据, 在站点空间尺度和0.5 h与日时间尺度上, 探讨了城市绿地生态系统秋季光化学反射植被指数(PRI)与LUE之间的关系。研究发现, 反映植被叶面积和色素变化的植被绿度指数在秋季呈现逐渐下降的趋势, 表征了植被冠层的状态与结构变化, 叶片从绿色逐渐变黄凋落, 植被冠层叶片的叶绿素逐渐减少, 裸露的枝干增多; 用空气温度和代表物候过程的绝对绿度指数(2G_RB)做线性回归分析, 得到回归系数(R2)为0.60 (p < 0.001)。说明在城市绿地生态系统中, 空气温度是决定植被物候过程的主要驱动因素, 随着植被物候变化, 叶片的凋落导致的裸露土壤的增多以及随时间变化的色素含量和其比例的变化将影响PRILUE的关系; 采用植被生长模型(logistic曲线), 拟合时间与2G_RB, 得到曲率变化最快的点, 确定为秋季植被落叶期的初日, 即第290天。在0.5 h和日时间尺度上, PRI都可以捕捉LUE的变化。但是日尺度上不同物候期, PRILUE的关系发生了急剧的变化。在秋季植被正常生长期, PRILUE之间的关系最密切(R2 = 0.70, p < 0.001)。当土壤温度大于15 ℃、光合有效辐射(PAR)大于300 μmol·m-2·s-1以及饱和水汽压差(VPD)大于700 Pa的情况下, PRI能够更好地预测LUE。基于通 量塔尺度上时空尺度相匹配, 利用半经验的核驱动二向反射分布函数模型得到的高光谱PRI和通量观测得到的LUE在不同环境条件下的关系以及考虑到在植被的不同物候期对PRILUE的关系的优化, 将会更加准确地估算城市绿地生态系统的LUE。  相似文献   

2.
温带森林生态系统水热通量在多时间尺度上受各种生物物理因子的影响。该研究假设这些因子对水热通量的影响机制具有时间尺度分异性, 通过涡度相关法(EC)于2019年全年对北京松山典型天然落叶阔叶林生态系统蒸散发(ET)、显热通量(H)、潜热通量(LE)、土壤热通量(G)、饱和水汽压差(VPD)、空气温度(Ta)、光合有效辐射(PAR)、归一化植被指数(NDVI)及10 cm深度土壤水分(VWC)等要素进行原位连续监测, 使用小波分析的方法分析了日、季节尺度上生物与非生物因子对生态系统能量分配与水汽交换的调控机制。主要研究结果: 2019年松山天然落叶阔叶林生态系统年均波文比(β)为1.53。ET具有明显的季节变化特征, 从第100天开始逐渐增加, 7月达到峰值, 第300天下降到最低水平。ET最大日累计值为5.01 mm·d-1, 年累计值为476.2 mm, 年降水量为503.3 mm。在日尺度上水热通量与VPD间滞后时间最短, 为3.36 h。在季节尺度上与PAR间滞后时间最短, 为8天。季节尺度上PAR通过VPD来对ET造成间接影响, 而对β造成直接影响。该研究发现不同时间尺度上水热通量与环境因子间的时滞关系, 为选择模型在不同时间尺度下北方温带落叶阔叶林生态系统过程的最佳输入参数提供科学支持。  相似文献   

3.
为了揭示三江源区垂穗披碱草(Elymus nutans)人工草地生态系统(100°26′-100°41′ E, 34°17′-34°25′ N, 海拔3 980 m)的净生态系统CO2交换(NEE), 该研究利用2006年涡度相关系统观测的数据分析了该人工草地的NEE, 总初级生产力(GPP)、生态系统呼吸(Reco)以及Reco/GPP的变化特征及其影响因子。CO2日最大吸收值为6.56 g CO2·m-2·d-1, 最大排放值为4.87 g CO2·m-2·d-1GPP年总量为1 761 g CO2·m-2, 其中约90%以上被生态系统呼吸所消耗, CO2的年吸收量为111 g CO2·m-2。5月的Reco/GPP略高于生长季的其他月份, 为90%; 6月Reco/GPP比值最低, 为79%。生态系统的呼吸商(Q10)为4.81, 显著高于其他生态系统。该研究表明: 生长季的NEE主要受光量子通量密度(PPFD)、温度和饱和水汽压差(VPD)的影响, 生态系统呼吸则主要受土壤温度的控制。  相似文献   

4.
生态系统光能利用率(LUE)反映了植被通过光合作用利用光能吸收和固定大气中CO2的能力, 是表征生态系统生产力的重要指标。选取长白山温带阔叶红松(Pinus koraiensis)林生态系统为研究对象, 利用涡度相关通量观测数据, 采用直角双曲线方程获取了生态系统光合作用的表观量子效率(ε); 基于总生态系统初级生产力(GEP)与下垫面入射光合有效辐射(Q)的比值得到生态光能利用率(LUEeco)。研究表明: 在季节尺度上, εLUEeco均表现出显著的单峰变化特征, 并主要受到土壤温度和归一化植被指数(NDVI)的调控, 同时, εLUEeco都受到GEP的显著影响, 而与Q的相关性较弱或无显著相关关系, 但散射辐射的增加在一定程度上有助于提高生态系统的LUEεLUEeco存在显著的线性正相关关系, 但ε明显高于LUEeco。2003-2005年, εLUEeco每年最大值的平均值分别为(0.087 ± 0.003)和(0.040 ± 0.002) μmol CO2·μmol photon-1, 年际间变异度分别为4.17%和4.25%, 而不同年份之间最大差异均达到8%或8%以上, 从而对模型模拟结果产生明显影响。因此, 在基于光能利用率模型的模拟研究中, 最大LUE的年际变异需要在参数反演和优化中给予重要考虑。  相似文献   

5.
中国陆地植被净初级生产力遥感估算   总被引:106,自引:2,他引:106       下载免费PDF全文
该文在综合分析已有光能利用率模型的基础上,构建了一个净初级生产力(NPP)遥感估算模型,该模型体现了3方面的特色:1)将植被覆盖分类引入模型,并考虑植被覆盖分类精度对NPP估算的影响,由它们共同决定不同植被覆盖类型的归一化植被指数(NDVI)最大值;2)根据误差最小的原则,利用中国的NPP实测数据,模拟出各植被类型的最大光能利用率,使之更符合中国的实际情况;3)根据区域蒸散模型来模拟水分胁迫因子,与土壤水分子模型相比,这在一定程度上对有关参数实行了简化,使其实际的可操作性得到加强。模拟结果表明,1989~1993年中国陆地植被NPP平均值为3.12 Pg C (1 Pg=1015 g),NPP模拟值与观测值比较接近,690个实测点的平均相对误差为4.5%;进一步与其它模型模拟结果以及前人研究结果的比较表明,该文所构建的NPP遥感估算模型具有一定的可靠性,说明在区域及全球尺度上,利用地理信息系统技术将遥感数据和各种观测数据集成在一起,并对NPP模型进行参数校正,基本上可以实现全球范围不同生态系统NPP的动态监测。  相似文献   

6.
气候变化和人类活动是植被生产力年际尺度变化的重要驱动因素, 明晰二者对植被生产力的共同影响对于生态系统可持续管理至关重要。气候变化可能导致植被物候变化, 进而影响植被生产力。目前尚不清楚毛乌素沙地典型植被物候如何响应气候变化, 并因此影响生态系统总初级生产力(GPP)。此外, 植被恢复(覆盖度增加)和物候变化对GPP的共同影响有待明确。该研究选取典型黑沙蒿(Artemisia ordosica)灌丛生态系统, 结合MODIS遥感数据与涡度相关数据, 利用植被光合模型(VPM), 模拟并分析了2005-2018年间植被覆盖度和物候变化对GPP的影响。结果表明: (1) VPM模型能够较好地模拟涡度相关法观测的GPP动态(GPPFlux), 而MODIS遥感产品(MOD17A2H)则显著低估GPPFlux; (2)研究期内年均归一化差异植被指数(NDVI)、最大NDVI (NDVImax)和年总GPP均显著增加, 表明植被恢复促进了植被生产力增加; (3)基于NDVI和GPP日序列估算的生长季开始日期显著提前(2.1 d·a-1), 生长季结束日期显著推迟(1.5 d·a-1), 二者共同促使生长季长度延长(3.6 d·a-1); (4)物候期延长促进了GPP增加, 生长季长度每延长1天, 全年GPP显著增加6.44 g C·m-2·a-1; (5)植被覆盖度增加和生长季延长分别可以解释79%和57%的GPP增加; (6)尽管植被覆盖度和物候变化均促进GPP增加, 但前者是其增加的主要驱动因素。鉴于植被覆盖度增加和生长季延长也可能导致生态系统呼吸和蒸散发增加, 未来研究仍需探究生态系统碳汇能力、水分利用效率和水分承载力对气候变化和人类活动的响应。此外, 该研究主要探讨GPP在年际尺度的变化趋势及影响因素, 未来需要研究GPP的年际变异规律及驱动因素, 尤其是对降水年际变异和极端干旱事件的响应。  相似文献   

7.
利用ChinaFLUX长白山站阔叶红松林的通量观测数据以及同期卫星遥感数据,对3PG模型中的植被光合模型(VPM)、光能利用率模型(EC-LUE)、陆地生态系统模型(TEM)、卡内基-埃姆斯-斯坦福方法模型(CASA)4种模型进行参数重组,通过对比通量观测值与估算值的均方根误差、决定系数及平均误差确定模型的最适合参数;并利用实测的通量观测数据对优化后的模型进行拟合度验证,以提高其估算长白山阔叶红松林总初级生产力(GPP)的准确性.结果表明: 采用温度、增强植被指数、地表水分指数分别表征原模型中的温度限制因子、光合有效辐射吸收比例、水分限制因子估算长白山阔叶红松林GPP时,结果最优,优化后模型的精度(R2=0.948,RMSE=0.035 mol·m-2·month-1)明显优于原模型(R2=0.854,RMSE=0.177 mol·m-2·month-1),且能够有效改善原模型生长季明显高估的现象;通过敏感性分析可知,温度是对GPP估算不确定性影响最大的参数,其次为增强型植被指数和光合有效辐射,地表水分指数最小,且变量间的交互作用对GPP估算不确定性也存在影响.  相似文献   

8.
碳循环模型参数的确定和优化对生态系统净CO2交换(NEE)的模型计算至关重要。该文利用2010-2012年ChinaFLUX千烟洲站点的通量观测资料, 对植被光合呼吸模型(VPRM)的参数进行了优化。通过比较两种不同的拟合方案, 发现利用传统光响应方程得到的参数不适用于VPRM, 而利用模型自身反演方案拟合得到的参数最大光量子效率(λ)达0.203, 大于C3植物平均值, 但与其他相关研究结果吻合。采用VPRM模型反演方案优化得到的参数后, VPRM能较准确地模拟千烟洲站不同季节的NEE。其对全年半小时NEE模拟的平均误差为-0.86 μmol·m-2·s-1, 相关系数为0.72。模型可准确地模拟生长旺季NEE平均日变化, 但低估了非生长旺季白天吸收峰值约52%。通过个例分析发现, VPRM模型可以准确模拟晴天条件下NEE的时间变化, 但对阴雨天条件下NEE的模拟还存在较大的不确定性。该研究将有助于进一步改进CO2通量及浓度的区域数值模拟。  相似文献   

9.
高寒灌丛草甸和草甸均是青藏高原广泛分布的植被类型, 在生态系统碳通量和区域碳循环中具有极其重要的作用。然而迄今为止, 对其碳通量动态的时空变异还缺乏比较分析, 对碳通量的季节和年际变异的主导影响因子认识还不够清晰, 不利于深入理解生态系统碳通量格局及其形成机制。该研究选取位于青藏高原东部海北站高寒灌丛草甸和高原腹地当雄站高寒草原化草甸年降水量相近的5年(2004-2008年)的涡度相关CO2通量连续观测数据, 对生态系统净初级生产力(NEP)及其组分, 包括总初级生产力(GPP)和生态系统呼吸的季节、年际动态及其影响因子进行了对比分析。结果表明: 灌丛草甸的CO2通量无论是季节还是年际累积量均高于草原化草甸, 并且连续5年表现为“碳汇”, 平均每年NEP为70 g C·m -2·a -1, 高寒草原化草甸平均每年NEP为-5 g C·m -2·a -1, 几乎处于碳平衡状态, 但其源/汇动态极不稳定, 在2006年-88 g C·m -2·a -1的“碳源”至2008年54 g C·m -2·a -1的“碳汇”之间转换, 具有较大的变异性。这两种高寒生态系统源/汇动态的差异主要源于归一化植被指数(NDVI)的差异, 因为NDVI无论在年际水平还是季节水平都是NEP最直接的影响因子; 其次, 灌丛草甸还具有较高的碳利用效率(CUE, CUE = NEP/GPP), 而年降水量和NDVI是决定两生态系统CUE大小的关键因子。两地区除了CO2通量大小的差异外, 其环境影响因子也有所不同。采用结构方程模型进行的通径分析表明, 灌丛草甸生长季节CO2通量的主要限制因子是温度, NEPGPP主要受气温控制, 随着气温升高而增加; 而草原化草甸的CO2通量多以季节性干旱导致的水分限制为主, 其次才是气温的影响, 受二者的共同限制。此外, 两生态系统生长季节生态系统呼吸主要受GPP和5 cm土壤温度的直接影响, 其中GPP起主导作用, 非生长季节生态系统呼吸主要受5 cm土壤温度影响。该研究还表明, 水热因子的协调度是决定青藏高原高寒草地GPPNEP的关键要素。  相似文献   

10.
太阳辐射是陆地生态系统碳水循环的能量来源。太阳辐射的变化对植被吸收大气CO2具有重要影响。该文通过辐射观测数据建立散射辐射比例与晴空指数的关系, 结合生态过程模型(BEPS)和通量观测数据, 模拟分析了太阳辐射变化对千烟洲常绿针叶林总初级生产力(GPP)的影响。研究结果表明: 千烟洲森林生态系统的阴叶对年GPP总量的贡献达67%, 太阳辐射变化对阴叶光合作用的影响决定了冠层GPP的变化; 太阳辐射强度和分布的年际差异导致年GPP对太阳辐射变化的响应不同, 2003、2004和2005年太阳辐射分别变化-5.44%、-1.83%和6.26%, 可使千烟洲生态系统当年GPP总量达到最大值; 在季节上, 太阳辐射的增加会导致5-6月GPP上升, 7-9月GPP下降, 使年GPP变化程度降低; 在天尺度上, 晴空指数在0.43时, 太阳辐射变化对GPP的影响最小。  相似文献   

11.
AimsQuantifying the gross primary productivity (GPP) of vegetation is of primary interest in studies of global carbon cycle. This study aims to optimize the MODIS GPP model for specific environments of a fragile waterhead ecosystem, by performing simulations of long-term (from 2001 to 2012) GPP with optimized MOD_17 model, and to analyze the response of GPP to the local climatic variations.Methods The original MODIS GPP products that underestimate GPP were validated against two years (2010-2011) of eddy covariance (EC) data at two sites (i.e. an alpine pasture site and a forest site, respectively) in the upstream of Heihe River Basin. Three comparative experiments were then conducted to analyze the effects of input parameters derived from three sources (i.e. meteorological, biome-specific, and fraction of absorbed photosynthetically active radiation (fPAR) parameters) on the model behavior. After refining the model-driven parameters, long-term GPPs of the study area were estimated using the optimized MOD_17 model, and the Least Absolute Deviation method was applied to analyze the partial correlations between interannual GPPs and climatic variables (temperature, precipitation and vapor pressure deficit (VPD)). Important findings The uncertainties in the original MODIS GPP products are attributable to biome-specific parameters, input data (e.g. meteorological and radiometry data) and vegetation maps. At the pasture site, the light use efficiency had the strongest impact on the GPP simulations. The refined fPAR calculated from the leaf area index (LAI) products of Global Land Surface Satellite (GLASS) greatly improved the GPP estimates, especially at the forest site. The GPPs from the optimized MOD_17 model well matched the EC data (R2 = 0.90, root mean squared error (RMSE) = 1.114 g C·m-2·d-1 at the alpine pasture site; R2 = 0.91, RMSE = 0.649 g C·m-2·d-1 at the forest site). The time series of GPPs displayed an up trend at an average rate of 9.58 g C·m-2·a-1 from 2001 to 2012. Examination of the partial correlations between interannual GPPs and climatic variables showed that the annual mean temperature and VPD generally had significant positive impacts on GPP, and the annual precipitation had a negative impact on GPP.  相似文献   

12.
弄清土地利用和降水变化对林地土壤主要温室气体(CO2、CH4和N2O)排放通量变化的影响, 是准确评估森林土壤温室气体排放能力的重要基础。该研究以常绿落叶阔叶混交林原始林、桦木(Betula luminifera)次生林和马尾松(Pinus massoniana)人工林为对象, 采用静态箱-气相色谱法研究了3种土地利用方式(常绿落叶阔叶混交林原始林、桦木次生林和马尾松人工林)和降水减少处理状况下森林土壤CO2、CH4和N2O通量排放特征, 并探讨了其环境驱动机制。研究结果表明: 原始林土壤CH4吸收通量显著高于次生林和人工林, 次生林CH4吸收通量显著高于人工林土壤。人工林土壤CO2排放通量显著高于原始林和次生林土壤。次生林土壤N2O排放通量高于原始林和人工林, 但三者间差异不显著。降水减半显著抑制了3种不同土地利用方式下林地土壤CH4吸收通量; 降水减半处理对原始林和次生林土壤CO2排放通量均具有显著的促进作用, 而对人工林土壤CO2排放通量具有显著的抑制作用; 降水减半处理促进了原始林和人工林林地土壤N2O排放而抑制了次生林林地土壤N2O排放。原始林和次生林林地土壤CH4吸收通量随土壤温度升高显著增加, CH4吸收通量与土壤温度均呈显著相关关系; 原始林、次生林和人工林土壤CO2和N2O排放通量与土壤温度均呈显著正相关关系; 土壤湿度抑制了次生林和人工林土壤CH4吸收通量, 其CH4吸收通量随土壤湿度增加显著减少; 原始林土壤CO2排放通量与土壤湿度呈显著正相关关系。自然状态下, 原始林土壤N2O排放通量与土壤湿度呈显著正相关关系, 原始林和次生林土壤N2O排放通量与硝态氮含量呈显著相关关系。研究结果表明全球气候变化(如降水变化)和土地利用方式的转变将对北亚热带森林林地土壤温室气体排放通量产生显著的影响。  相似文献   

13.
《植物生态学报》2016,40(10):1049
Aims It is important to study the effects of land use change and reduced precipitation on greenhouse gas fluxes (CO2, CH4 and N2O) of forest soils. Methods The fluxes of CO2, CH4 and N2O and their responses to environmental factors of primary forest soil, secondary forest soil and artificial forest soil under a reduced precipitation regime were explored using the static chamber and gas chromatography methods during the period from January to December in 2014. Important findings Results indicate that CH4 uptake of primary forest soil ((-44.43 ± 8.73) μg C·m-2·h-1) was significantly higher than that of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) and the artificial forest soil ((-10.52 ± 2.11) μg C·m-2·h-1). CH4 uptake of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) was significantly higher than that of the artificial forest ((-10.52 ± 2.11) μg C·m-2·h-1). CO2 emissions of the artificial forest soil ((106.53 ± 19.33) μg C·m-2·h-1) were significantly higher than that of the primary forest soil ((49.50 ± 8.16) μg C·m-2·h-1) and the secondary forest soil ((63.50 ± 5.35) μg C·m-2·h-1) (p < 0.01). N2O emissions of the secondary forest soil ((1.91 ± 1.22) μg N·m-2·h-1) were higher than that of the primary forest soil ((1.40 ± 0.28) μg N·m-2·h-1) and the artificial forest soil ((1.01 ± 0.86) μg N·m-2·h-1). Reduced precipitation (-50%) had a significant inhibitory effect on CH4 uptake of the artificial forest soil, while it enhanced CO2 emissions of the primary forest soil and the secondary forest soil. Reduced precipitation had a significant inhibitory effect on CO2 emissions of the artificial forest soil and N2O emissions of the secondary forest (p < 0.01). Reduced precipitation promotes N2O emissions of the primary forest soil and the artificial forest soil. CH4 uptake of the primary forest and the secondary forest soil increased significantly with the increase of soil temperature under natural and reduced precipitation. CO2 and N2O emission fluxes of the primary forest soil, secondary forest soil and artificial forest soil were positively correlated with soil temperature (p < 0.05). Soil moisture inhibited CH4 uptake of the secondary forest soil and the artificial forest soil (p < 0.05). CO2 emissions of the primary forest soil were significantly positively correlated with soil moisture (p < 0.05). N2O emissions of primary forest soil and secondary forest soil were significantly correlated with the nitrate nitrogen content (p < 0.05). It was implied that reduced precipitation and land use change would have significant effects on greenhouse gas emissions of subtropical forest soils.  相似文献   

14.
《植物生态学报》2017,41(3):337
Aims Estimation of gross primary productivity (GPP) of vegetation at the global and regional scales is important for understanding the carbon cycle of terrestrial ecosystems. Due to the heterogeneous nature of land surface, measurements at the site level cannot be directly up-scaled to the regional scale. Remote sensing has been widely used as a tool for up-saling GPP by integrating the land surface observations with spatial vegetation patterns. Although there have been many models based on light use efficiency and remote sensing data for simulating terrestrial ecosystem GPP, those models depend much on meteorological data; use of different sources of meteorological datasets often results in divergent outputs, leading to uncertainties in the simulation results. In this study, we examines the feasibility of using two GPP models driven by remote sensing data for estimating regional GPP across different vegetation types. Methods Two GPP models were tested in this study, including the Temperature and Greenness Model (TG) and the Vegetation Index Model (VI), based on remote sensing data and flux data from the China flux network (ChinaFLUX) for different vegatation types for the period 2003-2005. The study sites consist of eight ecological stations located in Xilingol (grassland), Changbaishan (mixed broadleaf-conifer forest), Haibei (shrubland), Yucheng (cropland), Damxung (alpine meadow), Qianyanzhou (evergreen needle-leaved forest), Dinghushan (evergreen broad-leaved forest), and Xishuangbanna (evergreen broad-leaved forest), respectively. Important findings All the remote sensing parameters employed by the TG and VI models had good relationships with the observed GPP, with the values of coefficient of determination, R2, exceeding 0.67 for majority of the study sites. However, the root mean square errors (RMSEs) varied greatly among the study sites: the RMSE of TG ranged from 0.29 to 6.40 g·m-2·d-1, and that of VI ranged from 0.31 to 7.09 g·m-2·d-1, respectively. The photosynthetic conversion coefficients m and a can be up-scaled to a regional scale based on their relationships with the annual average nighttime land surface temperature (LST), with 79% variations in m and 58% of variations in a being explainable in the up-scaling. The correlations between the simulated outputs of both TG and VI and the measured values were mostly high, with the values of correlation coefficient, r, ranging from 0.06 in the TG model and 0.13 in the VI model at the Xishuangbanna site, to 0.94 in the TG model and 0.89 in the VI model at the Haibei site. In general, the TG model performed better than the VI model, especially at sites with high elevation and that are mainly limited by temperature. Both models had potential to be applied at a regional scale in China.  相似文献   

15.
吴旭  陈云明  唐亚坤 《植物生态学报》2015,39(12):1176-1187
水分供应不足及水热不同步常导致黄土丘陵地区在春末和夏初出现季节性干旱。为阐明该地区主要造林树种的蒸腾耗水特征及其对降水的响应, 使用热扩散式树干茎流计(TDP)于2009年4-10月对黄土丘陵区安塞国家生态试验站刺槐(Robinia pseudoacacia)和侧柏(Platycladus orientalis)的树干液流密度(Fd)进行连续观测, 并同步测定了气象、土壤水分等环境因子。结果表明: 刺槐和侧柏在生长季内不同生长时期的Fd均表现为单峰型日变化特征, 刺槐最高液流峰值为0.12068 m3·m-2·h-1, 是侧柏最高液流值(0.03737 m3·m-2·h-1)的3.23倍。除生长旺盛季(7-8月)外, 刺槐和侧柏降水后的Fd明显高于降水前。同时反映水汽压差(VPD)和太阳辐射(Rs)的蒸腾变量(VT)能够很好地模拟Fd, 且两者呈显著的指数正相关关系, 随VT的增加Fd逐渐增大, VT增加到50 kPa (W·m-2)1/2左右时, Fd的变化趋于稳定; 通过对降水前后两个树种水力导度(拟合参数b值)分析, 相对于侧柏, 刺槐更易受降水的影响(p < 0.001)。因此, 可认为刺槐是降水敏感型植物, 而侧柏是降水不敏感型植物。该研究通过分析黄土丘陵区人工林树种对降水的差异性响应, 从树木水分利用方面能够为当地生态恢复过程中人工林的管理提供科学依据。  相似文献   

16.
《植物生态学报》2016,40(10):1077
Aims Light-use efficiency (LUE) is one of critical parameters in the terrestrial ecosystem production studies. Accurate determination of LUE is very important for LUE models to simulate gross primary productivity (GPP) at regional and global scales. We used eddy covariance technique measurement and tower-based, multi-angular spectro-radiometer observations in autumn 2012 to explore the relationship between bidirectional reflectance distribution function (BRDF) corrected photochemical reflectance index (PRI) and LUE in different phenology and environment conditions in urban green-land ecosystems. Methods Using the eddy covariance technique, we estimated the temporal changes in GPP during the autumn 2012 over Beijing Olympic Forest Park. LUE was calculated as the ratio of GPP to the difference between incoming photosynthetically active radiation (PAR) and PAR reflected from the canopy. Daily PRI values were averaged from the BRDF using semi-empirical kernel driven models. The absolute greenness index (2G_RB) was made by webcam at a constant view zenith and view azimuth angle at solar noon. The logistic function was used to fit the time series of the greenness index. The onset of phonological stages was defined as the point when the curvature reached its maximum value. Important findings Webcamera-observed greenness index (2G_RB) showed a decreasing trend. There was a highly significant relationship between 2G_RB and air temperature (R2 = 0.60, p < 0.001). This demonstrates that air temperature is the main driving factor to determine the phenology. PRI estimated from multi-angle hyper-spectrum can estimate LUE in urban green-land ecosystems in vigorous photosynthetic period. The correlation was the strongest (R2 = 0.70, p < 0.001) in the peak photosynthetic period. PRI relates better to LUE under high temperature (>15 °C) with high vapour pressure deficit (VPD) (>700 Pa) and high PAR (>300 μmol·m-2·s-1). The LUE was up-scaled to landscape/regional scales based on these relationships and phenology. It can also be used for the estimation of GPP of urban green-land with high accuracy.  相似文献   

17.
《植物生态学报》2014,38(3):219
太阳辐射是陆地生态系统碳水循环的能量来源。太阳辐射的变化对植被吸收大气CO2具有重要影响。该文通过辐射观测数据建立散射辐射比例与晴空指数的关系, 结合生态过程模型(BEPS)和通量观测数据, 模拟分析了太阳辐射变化对千烟洲常绿针叶林总初级生产力(GPP)的影响。研究结果表明: 千烟洲森林生态系统的阴叶对年GPP总量的贡献达67%, 太阳辐射变化对阴叶光合作用的影响决定了冠层GPP的变化; 太阳辐射强度和分布的年际差异导致年GPP对太阳辐射变化的响应不同, 2003、2004和2005年太阳辐射分别变化-5.44%、-1.83%和6.26%, 可使千烟洲生态系统当年GPP总量达到最大值; 在季节上, 太阳辐射的增加会导致5-6月GPP上升, 7-9月GPP下降, 使年GPP变化程度降低; 在天尺度上, 晴空指数在0.43时, 太阳辐射变化对GPP的影响最小。  相似文献   

18.
亚热带森林生态系统具有巨大的固碳潜力。净初级生产力(NPP)在碳循环过程中具有重要的作用, 受到气候变化、大气成分、森林扰动的强度和频度、林龄等因子的综合影响, 然而目前上述各因子对亚热带森林NPP变化的贡献尚不明确, 需要鉴别森林NPP时空变化的主要驱动因子, 以准确认识亚热带森林生态系统碳循环。该文综合气象数据、年最大叶面积指数(LAI)、参考年NPP (BEPS模型模拟)、林龄、森林类型、土地覆盖、数字高程模型(DEM)、土壤质地、CO2浓度、氮沉降等多源数据, 利用InTEC模型(Integrated Terrestrial Ecosystem Carbon-budget Model)研究亚热带典型地区江西省森林生态系统1901-2010年NPP时空动态变化特征, 通过模拟情景设计, 着重讨论1970-2010年气候变化、林龄、CO2浓度和氮沉降对森林NPP动态变化的影响。研究结果如下: (1) InTEC模型能较好地模拟研究区NPP的时空变化; (2)江西省森林NPP 1901-2010年为(47.7 ± 4.2) Tg C·a-1 (平均值±标准偏差), 其中20世纪70年代、80年代、90年代分别为50.7、48.8、45.4 Tg C·a-1, 2000-2009年平均为55.2 Tg C·a-1; 随着森林干扰后的恢复再生长, 江西省森林NPP显著上升, 2000-2009年NPP增加的森林面积占森林总面积的60%; (3) 1970-2010年, 仅考虑森林干扰因子和仅考虑非干扰因子(气候、氮沉降、CO2浓度)情景下NPP分别为43.1和53.9 Tg C·a-1, 比综合考虑干扰因子和非干扰因子作用下的NPP分别低估7.3 Tg C·a-1 (低估的NPP与综合考虑干扰因子和非干扰因子作用下NPP的比值为14.5%,下同)和高估3.6 Tg C·a-1 (7.1%); 气候因子导致平均NPP减少2.0 Tg C·a-1 (4.7%), 氮沉降导致平均NPP增加4.5 Tg C·a-1 (10.4%), CO2浓度变化及耦合效应(氮沉降+ CO2浓度变化)分别导致平均NPP增加4.4 Tg C·a-1 (10.3%)和9.4 Tg C·a-1 (21.8%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号