首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanogenesis during oogenesis in the wild-type and albino (a/a) axolotl was compared. Tyrosine-dopa oxidase activity, melanin accumulation, and melanosome development were correlated and the effect of the a gene on these biochemical and morphological events was examined. Studies of wild-type oocytes at the electron and light microscope level revealed that premelanosomes first appear in stage 2 oocytes. Mature melanosomes are present in stage 3 oocytes and steadily increase in number, reaching a maximum level in stage 6 oocytes. Melanosomes were detected in the albino. No obvious structural abnormalities were observed in these organelles, although they fail to accumulate melanin. Tyrosine-dopa oxidase (TDO) activity assayed radiometrically is at a very low level in stages 1 and 2 oocytes, reaches a maximum level in stage 3 oocytes, and declines to zero activity in stage 6 oocytes. In contrast to the finding with albino skin homogenates (Harsa-King, 1978), TDO activity was detected in albino oocytes. This activity never declined from its maximal stage 3 level. The addition of an inhibitor of proteolytic enzymes, phenylmethyl sulfonyl fluoride (PMSF), to the oocyte homogenization buffer completely blocks TDO activity in albino samples and reduces it somewhat in wild-type samples. It is suggested that TDO activity eliminated by PMSF represents TDO existing in an inactive form in vivo which is activated by proteolytic enzymes released upon homogenization. These results suggest that TDO is found only in an inactive state in albinos, a conclusion in agreement with the earlier work on albino skin melanocytes (Harsa-King, 1978). There is an inverse relationship between TDO activity and melanization in the wild type. The greater the amount of melanin deposited within the premelanosomes, the less enzyme activity is present. It is suggested, as it has been by others, that as melanin is synthesized within the confines of the oocyte melanosome, the active sites of the enzyme are covered up, resulting in its inactivation. The findings with the albino mutant support this hypothesis. No melanin deposition occurs in the albino, and TDO activity in PMSF-untreated samples does not decline from its maximal stage 3 level.  相似文献   

2.
In the development of the oocytes of xantho bidentatus four stages could be distinguished. In stage I the cytoplasm is homogenous, in state II a perinuclear ring is formed, in stage III oocytes round bodies which are carbohydrate-protein complexes appear near the peripheri. These bodies occupy the oocyte completely in the stage IV oocyte. There are two types of bodies in the oocyte, big oval or round bodies which are carbohydrate-protein complexes and smaller bodies in between the oval bodies. These smaller bodies are lipid bodies. In stage I and II the cytoplasm is rich in RNA and in stages III and IV the cytoplasm is full of carbohydrates, proteins and lipids.  相似文献   

3.
Little information exists about single N-acetylglucosamine modifications on proteins in growth and developmental model systems. To explore these phenomena, Xenopus laevis oocytes from stages I-VI of oogenesis were isolated and proteins analyzed on SDS-PAGE. The proteins were probed with antibodies specific for O-GlcNAc. Levels of the O-GlcNAc protein modification were highest in stages I and II, while decreasing in stages III-VI. The reduction in amount of O-GlcNAc-modified proteins was correlated to increases in apparent O-GlcNAcase (streptozotocin-inhibitable neutral hexosaminidase), activity involved in removing protein monoglycosylations. The O-GlcNAc modification was also characterized during progesterone-stimulated oocyte maturation. Although O-GlcNAcase activity appeared relatively constant between quiescent and matured stage VI oocytes, a small decrease in the levels of both total and specific O-GlcNAc-modified proteins was observed. Investigating the function of O-GlcNAc during maturation, oocytes were incubated with compounds known to modulate the levels of the O-GlcNAc protein modification and then stimulated to mature. Oocytes treated with compounds known to increase O-glycosylation consistently matured slower than non-treated controls, while oocytes treated with compounds that decrease O-glycosylation matured slightly faster than controls. The O-GlcNAc modification may play important roles in both the developmental and cell division processes of X. laevis oocytes.  相似文献   

4.
The ovary of the tick Amblyomma triste is classified as panoistic, which is characterized by the presence of oogonia without nurse and follicular cells. The present study has demonstrated that the oocytes in all developmental stages (I-IV) are attached to the ovary through a pedicel, a cellular structure that synthesizes and provides carbohydrate, lipids and proteins supplies for the oocytes during the vitellogenesis process. The lipids are deposited during all oocyte stages; they are freely distributed as observed in stages II, III and IV or they form complexes with other elements. The proteins are also deposited in all stages of the oocytes, however, in lower concentration in the stage IV. There is carbohydrate deposition from oocytes in the stage II as well as in stages III and IV. In addition, the present work has demonstrated that the oocyte yolk of A. triste has a glycolipoprotein nature and the elements are deposited in the following sequence: firstly the lipids and proteins, and finally the carbohydrates.  相似文献   

5.
As a response to gonadotropin, amphibian ovarian follicles primarily synthesize and secrete estradiol-17 β (E2) during vitellogenesis and progesterone (P) when fully grown. Stage IV (vitellogenic) and stage VI (full-grown) ovarian follicles from Xenopus laevis, as well as intermediate sizes, were used to explore this change in steroidogenesis. Optimum steroidogenesis occurred in both stage IV and stage VI follicles exposed for 6 h to 20 IU human chorionic gonadotropin/mL. Although the total amounts of steroid found were about the same, the E2/P ratios ranged from 26 to 35 for intact stage IV follicles, but only 0.02–0.03 for intact stage VI follicles. Steroid-producing follicle cells were isolated from stage IV and stage VI follicles by non-enzymatic procedures, were washed and were tested for steroidogenic activity in the absence of oocytes. In both cases, P was the predominant steroid produced (E2/P = 0.004–0.04), so the presence of stage IV, but not stage VI, oocytes appears to be necessary for E2 production as a response to gonadotropin. Octanol had no significant effect on the E2/P ratio of intact stage IV follicles. Dissected oocyte/follicle cell preparations from stage IV follicles were also periodically challenged with gonadotropin over 72 h, during which time most follicle cells detached from the oocyte and formed a monolayer over the bottom of the culture dish. The relatively high E2/P ratios for such preparations showed no significant change when stimulated with gonadotropin at various times over the 72 h, as long as the medium was not replaced. We conclude that the estrogenic effect of stage IV oocytes is most likely mediated by a secretory product rather than by gap junctions or by cell contact. Because the X. laevis oocyte has been shown to be a self-differentiating cell, the steroidogenic shift that occurs in developing ovarian follicles appears to be fundamentally regulated by the growing oocyte as it undergoes a physiological change rather than by different gonadotropins.  相似文献   

6.
Haemaphysalis longicornis is an important vector of various pathogens in domestic animals and humans. The tick is a unique species with bisexual and parthenogenetic races. Although mating induces oocyte development, it is possible in the parthenogenetic race to complete oogenesis without copulation. Here we examined the developmental process of oocytes from unfed to the oviposition period in parthenogenetic H. longicornis. We classified the developmental stages of oocytes into five stages: stage I, germinal vesicle occupies more than half of the cytoplasm; stage II, germinal vesicle occupies less than half of the cytoplasm; stage III, germinal vesicle migrates from the center in the oocyte to the vicinity of the pedicel cells; stage IV, the cytoplasm is filled with yolk granules of various sizes; stage V, the cytoplasm is occupied by large yolk granules. Oocytes at the unfed period were undeveloped and classified as stage I. Stage I and II oocytes were observed at the rapid feeding period, indicating that oocyte development began after the initiation of blood feeding. All developmental stages of oocytes were observed at the pre-oviposition period. At 10?days after the beginning of the oviposition period, the ratios of stage I and II oocytes were higher than those of the previous period, suggesting that the ovarian development and activity may be continuing. Based on these findings, we propose classification criteria for the oocyte development in the parthenogenetic H. longicornis. The criteria will be useful for understanding the mechanisms of tick reproduction and transovarial transmission of pathogens.  相似文献   

7.
Oocytes at several stages of growth were isolated by enzymatic digestion of ovaries from infant mice. These oocytes were free of follicle cells and were obtained in sufficient numbers to permit direct biochemical analysis of glucose-6-phosphate dehydrogenase (G6PD) and lactate dehydrogenase (LDH) activities. Both enzymes increase in total activity as the oocyte grows. However, while the specific activity of G6PD remains constant up to an oocyte diameter of 80–85 μm, the specific activity of LDH increases four-fold. The specific activity of G6PD and especially LDH declines in oocytes over 80–85 μm in diameter, suggesting that the synthesis of these enzymes is almost completed at this stage of growth.  相似文献   

8.
An ultrastructural comparison of mouse oocytes isolated at various stages of growth and meiotic competence has been carried out. Progressive changes in the nucleoli, ribosomes, mitochondria, endoplasmic reticulum, Golgi complex, and other organelles and inclusions of the oocyte have been examined as a function of oocyte size by transmission electron microscopy. The observations presented support the idea that growth of the mammalian oocyte involves not just tremendous enlargement of the cell, but extensive alterations in its overall metabolism as reflected in the ultrastructure of the oocyte at various stages of growth.  相似文献   

9.
Summary The origin of the melanosome in the pigment epithelium of the chick embryo was studied by electron microscopy and cytochemistry of tyrosinase. The melanosome appears first at stage 16 in the dorso-caudal region of the optic cup and the first appearance of the tyrosinase activity can also be detected at the same stage in Golgi sac. At the early stages, premelanosomes and amorphous, electron dense granules which are considered to be the developing premelanosomes appear as a group at the basal region of the outer layer cell. The membrane of these granules is connected with that of ER. Attention should be paid to the fact that there are tyrosinase-negative premelanosomes, even when Golgi sac and Golgi vesicles are tyrosinase-positive. According to these facts it can be said that the site of origin of premelanosomes are not Golgi vesicles, but the smooth-surfaced ER connected with the rough-surfaced ER, and that the tyrosinase is transported to premelanosomes by tyrosinase-containing vesicles which originate from matured Golgi sac.The author is grateful to Prof. Dr. Junnosuke Nakai for his encouragement and valuable suggestions. Thanks are also due to Prof. Dr. Eichi Yamada and Prof. Dr. Shiro Igarashi for their comments on the electron-microscopic study.  相似文献   

10.
Oocyte development has been divided into five stages in the zebrafish Brachydanio rerio, based on morphological criteria and on physiological and biochemical events. In stage I (primary growth stage), oocytes reside in nests with other oocytes (Stage IA) and then within a definitive follicle (Stage IB), where they greatly increase in size. In stage II (cortical alveolus stage), oocytes are distinguished by the appearance of variably sized cortical alveoli and the vitelline envelope becomes prominent. In stage III (vitellogenesis), yolk proteins appear in oocytes and yolk bodies with crystalline yolk accrue during this major growth stage. Ooctes develop the capacity to respond in vitro to the steroid 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) by undergoing oocyte maturation. In stage IV (oocyte maturation), oocytes increase slightly in size, become translucent, and their yolk becomes non-crystalline as they undergo final meiotic maturation in vivo (and in response to DHP in vitro). In stage V (mature egg), eggs (approx. 0.75 mm) are ovulated into the ovarian lumen and are capable of fertilization. This staging series lays the foundation for future studies on the cellular processes occurring during oocyte development in zebrafish and should be useful for experimentation that requires an understanding of stage-specific events. © 1993 Wiley-Liss, Inc.  相似文献   

11.
We have studied Golgi apparatus dynamics during mouse oocyte in vitro maturation, employing both live imaging with the fluorescent lipid BODIPY-ceramide and immunocytochemistry using several specific markers (beta-COP, giantin, and TGN38). In germinal vesicle oocytes the Golgi consisted of a series of structures, possibly cisternal stacks, dispersed in the ooplasm, but slightly more concentrated in the interior than at the cortex. A similar pattern was detected in rhesus monkey germinal vesicle oocytes. These "mini-Golgis" were functionally active because they were reversibly disrupted by the membrane trafficking inhibitor brefeldin A. However, the drug had no visible effect if the oocytes had been previously microinjected with GTP-gamma-S. During in vitro maturation the large Golgi apparatus structures fragmented at germinal vesicle breakdown, and dispersed homogenously throughout the ooplasm, remaining in a fragmented state in metaphase-II oocytes. Similarly to what has been reported using protein synthesis inhibitors, the presence of brefeldin A blocked maturation at the germinal vesicle breakdown stage before the assembly of the metaphase-I spindle. These results suggest that progression of murine oocyte maturation may require functional membrane trafficking.  相似文献   

12.
13.
Summary Tyrosinase was first detected in melanoblasts by the DOPA-oxidase reaction in the presence of catalase in explants of goldfish integument after 12 hr culture with either ACTH (1 IU/ml) or DB-cAMP (0.1m M). Melanin did not appear in the new melanocytes until 24 hr. The data indicate that the release of cAMP within the melanoblast in response to ACTH treatment is rapid and the tyrosinase in the melanoblast is released from inhibition and/or activated at least 12 hr prior to melanization of premelanosomes. Contribution number 338, Department of Biology.  相似文献   

14.
Summary A cytochemical study of the Golgi apparatus in the developing oocyte of the golden hamster was carried out using the TPPase, AcPase and zinc iodide-osmium tetroxide (ZnOs) techniques. Tissue from both immature and sexually mature animals was investigated.Peak TPPase activity was found in pre-growth oocytes in ovaries from sexually mature adults. Some activity was also present in SER in the peripheral cytoplasm of growing oocytes. AcPase activity was found only after the onset of oocyte growth. It was present in Golgi cisternae and associated vesicles and in some profiles of peripheral SER. No structures corresponding to GERL were identified. Strong staining with ZnOs was seen, at all stages studied, in certain Golgi vesicles and short tubules but not in the cisternae unless the oocyte was atretic. Weaker ZnOs staining was characteristic of ER throughout the oocyte.With all techniques there was a falling off of reactivity as oocyte size increased. Within a single oocyte some Golgi bodies were negative while others were positive, with both TPPase and AcPase techniques. This suggests that two or more functional types of this organelle are present within the developing oocytes.We would like to thank Dr. K.N. Christie for his interest and helpful suggestions regarding the enzyme techniques  相似文献   

15.
J P Stone  W Chavin 《Histochemistry》1976,46(2):167-171
Tyrosinase was first detected in melanoblasts by the DOPA-oxidase reaction in the presence of catalase in explants of goldfish integument after 12 hr culture with either ACTH (1IU/ml) or DB-cAMP (0.1mM). Melanin did not appear in the new melanocytes until 24 hr. The data indicate that the release of cAMP within the melanoblast in response to ACTH treatment is rapid and the tyrosinase in the melanoblast is released from inhibition and/or activated at least 12 hr prior to melanization of premelanosomes.  相似文献   

16.
We have measured the levels of cyclin mRNAs and polypeptides during oogenesis, progesterone-induced oocyte maturation, and immediately after egg activation in the frog, Xenopus laevis. The mRNA for each cyclin is present at a constant level of approximately 5 x 10(7) molecules per oocyte from the earliest stages of oogenesis until after fertilization. The levels of polypeptides show more complex patterns of accumulation. The B-type cyclins are first detectable in stage IV and V oocytes. Cyclin B2 polypeptide is present at approximately 2 x 10(9) molecules (150 pg) per oocyte by stage VI. The amount increases after progesterone treatment, but returns to its previous level after GVBD and undergoes no further change until it is destroyed at fertilization. Cyclin B1 is present at 4 x 10(8) molecules per oocyte in stage VI oocytes, and rises steadily during maturation, ultimately reaching similar levels to cyclin B2 in unfertilized eggs. Unlike the B-type cyclins, cyclin A is barely detectable in stage VI oocytes, and only starts to be made in significant amounts after oocytes are exposed to progesterone. A portion of all the cyclins are destroyed after germinal vesicle breakdown (GVBD), and cyclins B1 and B2 also experience posttranslational modifications during oocyte maturation. Progesterone strongly stimulates both cyclin and p34cdc2 synthesis in these oocytes, but whereas cyclin synthesis continues in eggs and after fertilization, synthesis of p34cdc2 declines strongly after GVBD. The significance of these results is discussed in terms of the activation and inactivation of maturation-promoting factor.  相似文献   

17.
18.
19.
Summary The distribution of thiamine pyrophosphatase (TPPase) activity in the acinar cells of the rat sublingual gland has been studied at various stages of the secretory cycle following stimulated secretion. The rats were stimulated to secrete by an intraperitoneal injection of isoproterenol and pilocarpine. In non-stimulated glands, TPPase activity is detected mainly in 3–4 cisternae at the inner concave side of the Golgi complex and in some adjacent condensing vacuoles as in other cells. In the acinar cells 1 to 2 h after stimulation, however, reaction product for the same enzyme activity is detected in the cisternae at the outer aspect, as well as the inner aspect, of the Golgi complex and even in the cisternae of the endoplasmic reticulum (ER). About 4 h after stimulation, TPPase activity becomes concentrated in 3–4 disternae at the inner concave side of the Golgi complex as in the acinar cells under non-stimulated conditions. Morphological observations of the acinar cells 1 to 2 h after the stimulation have indicated that the reorganization of the Golgi complex and ER is a major event which occurs at this stage. It is possible that this cellular event is related to the occurrence of TPPase activity in those sites which normally show negative reaction in non-stimulated state.  相似文献   

20.
The morphophysiological changes that occur during oocyte primary growth in Serrasalmus spilopleura were studied using ultrastructural cytochemical techniques. In the previtellogenic oocytes endoplasmic reticulum components, Golgi complex cisternae and vesicles, lysosomes, multivesicular bodies and some electron-dense vesicles react to acid phosphatase (AcPase) detection. The endoplasmic reticulum components, Golgi complex cisternae and vesicles also react to osmium tetroxide and potassium iodide impregnation (KI). These structures, except for the Golgi complex cisternae, are strongly contrasted by osmium tetroxide and zinc iodide impregnation (ZIO). Some electron-dense vesicles are ZIO-stained, while microvesicles in the multivesicular bodies and other large isolated cytoplasmic vesicles are contrasted by KI. At primary oocyte growth, the activity of the endomembranous system and the proliferation of membranous organelles are intense. The biosynthetic pathway of the lysosomal proteins such as acid phosphatase, involves the endoplasmic reticulum, Golgi complex, vesicles with inactive hydrolytic enzymes and, finally, the lysosomes. The oocyte endomembranous system have reduction capacity and are involved in the metabolism of rich in SH groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号