首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The capacity of anaerobic micro-organisms in the sediment of a freshwater lake to degrade halogenated benzoates was investigated. Sediments collected from Lake Ontario along the Toronto waterfront (Ontario, Canada) were incubated with halogenated benzoates and dehalogenation was measured by high pressure liquid chromatography (HPLC). Following adaptation to monohalogenated benzoates (3-bromobenzoate, 3-chlorobenzoate), cross-adaptation to complex halogenated aromatics (3,5-dichlorobenzoate, 4-amino-3,5-dichlorobenzoate), was assessed by monitoring their depletion by HPLC. Prior adaptation to 3-bromobenzoate resulted in a more rapid depletion of the complex halogenated aromatics (3,5-dichlorobenzoate and 4-amino-3,5-dichlorobenzoate) than prior adaptation to 3-chlorobenzoate. The results suggest that cross-adaptation may be an approach to a more rapid biodegradation of complex pollutants in lake sediments or in wastewater treatment systems, with the 3-bromobenzeate preferred over the 3-chlorobenzoate as the adaptation substrate.  相似文献   

2.
We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, “Desulfomonile tiedjei.” We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c3, or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, CO, or H2, but not by pyruvate plus coenzyme A or by dithionite. The pH and temperature optima for aryl dehalogenation were 8.2 and 35°C, respectively. The rate of dehalogenation was proportional to the amount of protein in the assay mixture. The substrate specificity of aryl dehalogenation activity for various aromatic compounds in “D. tiedjei” cell extracts was identical to that of whole cells, except differences were observed in the relative rates of halobenzoate transformation. Dehalogenation was 10-fold greater in “D. tiedjei” extracts prepared from cells cultured in the presence of 3-chlorobenzoate, suggesting that the activity was inducible. Aryl reductive dehalogenation in extracts was inhibited by sulfite, sulfide, and thiosulfate, but not sulfate. Experiments with combinations of substrates suggested that cell extracts dehalogenated 3-iodobenzoate more readily than either 3,5-dichlorobenzoate or 3-chlorobenzoate. Dehalogenation activity was found to be membrane associated. This is the first report characterizing aryl dehalogenation activity in cell extracts of an obligate anaerobe.  相似文献   

3.
A study was made of the metabolic and co-metabolic intermediates of 2- and 3-chlorobenzoate, 2,3- and 3,5-dichlorobenzoate to elucidate the mechanism(s) involved in the negative effects observed on the growth of a chlorobenzoate-degrading microbial consortium in the presence of mixed chlorobenzoates. 2-Chloro-muconate accumulated as the end-product in the cultural broths of the microbial consortium during growth on 2-chlorobenzoate; the same 2-chloromuconate was identified in the reaction mixtures of resting cells pre-grown on 2-chlorobenzoate and exposed to 3-chloro- and 2,3-dichlorobenzoate, while in similar experiments 1,2-dihydroxy-3,5-dichloro-cyclohexa-3,5-dienoate was detected as dead-end product of 3,5-dichlorobenzoate co-metabolism. These results suggest an initial degradative attack by 2-chlorobenzoate induced dioxygenase(s). The role of 3,5-dichlorobenzoate as an antagonist of 2-chlorobenzoate degradation was also studied: in the presence of mixed 2-chloro- and 3,5-dichlorobenzoate, the 3,5-dichlorobenzoate preferential uptake by the resting cells of the chlorobenzoate-degrading consortium was observed. 2-Chlorobenzoate entered the cells only after the complete removal of the co-substrate. In growing cells experiments, the addition of 1,2-dihydroxy-3,5-dichloro-cyclohexa-3,5-dienoate, the 3,5-dichlorobenzoate co-metabolite, to 2-chlorobenzoate exerted the same antagonistic effect of the parent compound, inhibiting both the microbial growth and the degradative process. These data are discussed, allowing us to attribute the inhibitory effects observed to a substrate/co-substrate competition, though other additional causes may not be totally excluded.  相似文献   

4.
Pseudomonas putida P111 was isolated by enrichment culture on 2,5-dichlorobenzoate and was also able to grow on 2-chloro-, 3-chloro-, 4-chloro-, 2,3-dichloro-, 2,4-dichloro-, and 2,3,5-trichlorobenzoates. However, 3,5-dichlorobenzoate completely inhibited growth of P111 on all ortho-substituted benzoates that were tested. When 3,5-dichlorobenzoate was added as a cosubstrate with either 3- or 4-chlorobenzoate, cell yields and chloride release were greater than those observed from growth on either monochlorobenzoate alone. Moreover, resting cells of P111 grown on 4-chlorobenzoate released chloride from 3,5-dichlorobenzoate and produced no identifiable intermediate. In contrast, resting cells grown on 2,5-dichlorobenzoate metabolized 3,5-dichlorobenzoate without release of chloride and accumulated a degradation product, which was identified as 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene on the basis of gas chromatography-mass spectrometry confirmation of its two acid-hydrolyzed products, 3,5- and 2,4-dichlorophenol. Since 3,5-dichlorocatechol was rapidly metabolized by cells grown on 2,5-dichlorobenzoate, it is apparent that 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene is not further metabolized by these cells. Moreover, induction of a functional dihyrodiol dehydrogenase would not be required for growth of P111 on other ortho-chlorobenzoates since the corresponding chlorodihydrodiols produced from a 1,2-dioxygenase attack would spontaneously decompose to the corresponding catechols. In contrast, growth on 3-chloro-, 4-chloro-, or 3,5-dichlorobenzoate requires a functional dihydrodiol dehydrogenase, yet only the two monochlorobenzoates appear to induce for it.  相似文献   

5.
Pseudomonas putida P111 was isolated by enrichment culture on 2,5-dichlorobenzoate and was also able to grow on 2-chloro-, 3-chloro-, 4-chloro-, 2,3-dichloro-, 2,4-dichloro-, and 2,3,5-trichlorobenzoates. However, 3,5-dichlorobenzoate completely inhibited growth of P111 on all ortho-substituted benzoates that were tested. When 3,5-dichlorobenzoate was added as a cosubstrate with either 3- or 4-chlorobenzoate, cell yields and chloride release were greater than those observed from growth on either monochlorobenzoate alone. Moreover, resting cells of P111 grown on 4-chlorobenzoate released chloride from 3,5-dichlorobenzoate and produced no identifiable intermediate. In contrast, resting cells grown on 2,5-dichlorobenzoate metabolized 3,5-dichlorobenzoate without release of chloride and accumulated a degradation product, which was identified as 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene on the basis of gas chromatography-mass spectrometry confirmation of its two acid-hydrolyzed products, 3,5- and 2,4-dichlorophenol. Since 3,5-dichlorocatechol was rapidly metabolized by cells grown on 2,5-dichlorobenzoate, it is apparent that 1-carboxy-1,2-dihydroxy-3,5-dichlorocyclohexadiene is not further metabolized by these cells. Moreover, induction of a functional dihyrodiol dehydrogenase would not be required for growth of P111 on other ortho-chlorobenzoates since the corresponding chlorodihydrodiols produced from a 1,2-dioxygenase attack would spontaneously decompose to the corresponding catechols. In contrast, growth on 3-chloro-, 4-chloro-, or 3,5-dichlorobenzoate requires a functional dihydrodiol dehydrogenase, yet only the two monochlorobenzoates appear to induce for it.  相似文献   

6.
We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, "Desulfomonile tiedjei." We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c(3), or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, CO, or H(2), but not by pyruvate plus coenzyme A or by dithionite. The pH and temperature optima for aryl dehalogenation were 8.2 and 35 degrees C, respectively. The rate of dehalogenation was proportional to the amount of protein in the assay mixture. The substrate specificity of aryl dehalogenation activity for various aromatic compounds in "D. tiedjei" cell extracts was identical to that of whole cells, except differences were observed in the relative rates of halobenzoate transformation. Dehalogenation was 10-fold greater in "D. tiedjei" extracts prepared from cells cultured in the presence of 3-chlorobenzoate, suggesting that the activity was inducible. Aryl reductive dehalogenation in extracts was inhibited by sulfite, sulfide, and thiosulfate, but not sulfate. Experiments with combinations of substrates suggested that cell extracts dehalogenated 3-iodobenzoate more readily than either 3,5-dichlorobenzoate or 3-chlorobenzoate. Dehalogenation activity was found to be membrane associated. This is the first report characterizing aryl dehalogenation activity in cell extracts of an obligate anaerobe.  相似文献   

7.
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl–CoA), (ii) reductively dehalogenating 3-chlorobenzoyl–CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.  相似文献   

8.
The presence or absence of molecular oxygen has been shown to play a crucial role in the degradability of haloaromatic compounds. In the present study, it was shown that anaerobic phototrophic 3-chlorobenzoate (3CBA) metabolism by Rhodopseudomonas palustris DCP3 is oxygen tolerant up to a concentration of 3 μM O2. Simultaneous oxidation of an additional carbon source permitted light-dependent anaerobic 3CBA degradation at oxygen input levels which, in the absence of such an additional compound, would result in inhibition of light-dependent dehalogenation. Experiments under the same experimental conditions with strain DCP3 in coculture with an aerobic 3CBA-utilizing heterotroph, Alcaligenes sp. strain L6, revealed that light-dependent dehalogenation of 3CBA did not occur. Under both oxygen limitation (O2 < 0.1 μM) and low oxygen concentrations (3 μM O2), all the 3CBA was metabolized by the aerobic heterotroph. These data suggest that biodegradation of (halo)aromatics by photoheterotrophic bacteria such as R. palustris DCP3 may be restricted to anoxic photic environments.  相似文献   

9.
Kinetics of Sulfate and Acetate Uptake by Desulfobacter postgatei   总被引:8,自引:4,他引:4       下载免费PDF全文
The kinetics of sulfate and acetate uptake was studied in the sulfate-reducing bacterium Desulfobacter postgatei (DSM 2034). Kinetic parameters (Km and Vmax) were estimated from substrate consumption curves by resting cell suspensions with [35S]sulfate and [14C]acetate. Both sulfate and acetate consumption followed Michaelis-Menten saturation kinetics. The half-saturation constant (Km) for acetate uptake was 70 μM with cells from either long-term sulfate- or long-term acetate-limited chemostat cultures. The average Km value for sulfate uptake by D. postgatei was about 200 μM. Km values for sulfate uptake did not differ significantly when determined with cells derived either from batch cultures or sulfate- or acetate-limited chemostat cultures. Acetate consumption was observed at acetate concentrations of ≤1 μM, whereas sulfate uptake usually ceased at 5 to 20 μM. The results show that D. postgatei is not freely permeable to sulfate ions and further indicate that sulfate uptake is an energy-requiring process.  相似文献   

10.
Michaelis-Menten kinetic parameters for H2 consumption by three methanogenic habitats were determined from progress curve and initial velocity experiments. The influences of mass transfer resistance, endogenous H2 production, and growth on apparent parameter estimates were also investigated. Kinetic parameters could not be determined for undiluted rumen fluid and some digestor sludge from gas-phase measurements of H2, since mass transfer of H2 across the gas-liquid interface was rate limiting. However, accurate values were obtained once the samples were diluted. H2 consumption by digestor sludge with a long retention time and by hypereutrophic lake sediment was not phase transfer limited. The Km values for H2 uptake by these habitats were similar, with means of 5.8, 6.0, and 7.1 μM for rumen fluid, digestor sludge, and sediment, respectively. Vmax estimates suggested a ratio of activity of approximately 100 (rumen fluid):10 (sludge):1 (sediment); their ranges were as follows: rumen fluid, 14 to 28 mM h−1; Holt sludge, 0.7 to 4.3 mM h−1; and Wintergreen sediment, 0.13 to 0.49 mM h−1. The principles of phase transfer limitation, studied here for H2, are the same for all gaseous substrates and products. The limitations and errors associated with gas phase determination of kinetic parameters were evaluated with a mathematical model that combined mass transport and Michaelis-Menten kinetics. Three criteria are described which can be used to evaluate the possibility that a phase transfer limitation exists. If it does not exist, (i) substrate consumption curves are Michaelis-Menten and not first order, (ii) the Km is independent of initial substrate concentration, and (iii) the Km is independent of biomass (Vmax) and remains constant with dilution of sample. Errors in the Michaelis-Menten kinetic parameters are caused by endogenously produced H2, but they were <15% for rumen fluid and 10% for lake sediment and digestor sludge. Increases in Vmax during the course of progress curve experiments were not great enough to produce systematic deviations from Michaelis-Menten kinetics.  相似文献   

11.
Acinetobacter sp. strain 4CB1 was isolated from a polychlorobiphenyl-contaminated soil sample by using 4-chlorobenzoate as a sole source of carbon and energy. Resting cells of Acinetobacter sp. strain 4CB1 hydrolytically dehalogenated 4-chlorobenzoate under aerobic and anaerobic conditions, but 4-hydroxybenzoate accumulated only under anaerobic conditions. Cell extracts of Acinetobacter sp. strain 4CB1 oxidized 4-hydroxybenzoate by an NADH-dependent monooxygenase to form protocatechuate, which was subsequently oxidized by both ortho- and meta-protocatechuate dioxygenase reactions. When grown on biphenyl, Acinetobacter sp. strain P6 cometabolized 4,4'-dichlorobiphenyl primarily to 4-chlorobenzoate; however, when this strain was grown in a coculture with Acinetobacter sp. strain 4CB1, 4-chlorobenzoate did not accumulate but was converted to inorganic chloride. When resting cells of Acinetobacter sp. strain 4CB1 were incubated anaerobically with 3,4-dichlorobenzoate, they accumulated 4-carboxy-1,2-benzoquinone as a final product. Since 3,4-dichlorobenzoate is a product that is formed from the cometabolism of 3,4-dichloro-substituted tetrachlorobiphenyls by Acinetobacter sp. strain P6, the coculture has a potential application for dehalogenation and mineralization of specific polychlorobiphenyl congeners.  相似文献   

12.
Acinetobacter sp. strain 4CB1 was isolated from a polychlorobiphenyl-contaminated soil sample by using 4-chlorobenzoate as a sole source of carbon and energy. Resting cells of Acinetobacter sp. strain 4CB1 hydrolytically dehalogenated 4-chlorobenzoate under aerobic and anaerobic conditions, but 4-hydroxybenzoate accumulated only under anaerobic conditions. Cell extracts of Acinetobacter sp. strain 4CB1 oxidized 4-hydroxybenzoate by an NADH-dependent monooxygenase to form protocatechuate, which was subsequently oxidized by both ortho- and meta-protocatechuate dioxygenase reactions. When grown on biphenyl, Acinetobacter sp. strain P6 cometabolized 4,4'-dichlorobiphenyl primarily to 4-chlorobenzoate; however, when this strain was grown in a coculture with Acinetobacter sp. strain 4CB1, 4-chlorobenzoate did not accumulate but was converted to inorganic chloride. When resting cells of Acinetobacter sp. strain 4CB1 were incubated anaerobically with 3,4-dichlorobenzoate, they accumulated 4-carboxy-1,2-benzoquinone as a final product. Since 3,4-dichlorobenzoate is a product that is formed from the cometabolism of 3,4-dichloro-substituted tetrachlorobiphenyls by Acinetobacter sp. strain P6, the coculture has a potential application for dehalogenation and mineralization of specific polychlorobiphenyl congeners.  相似文献   

13.
The Arthrobacter sp. strain SU 4-chlorobenzoate (4-CBA) dehalogenation pathway converts 4-CBA to 4-hydroxybenzoate (4-HBA). The pathway operon contains the genes fcbA, fcbB, and fcbC (A. Schmitz, K. H. Gartemann, J. Fiedler, E. Grund, and R. Eichenlaub, Appl. Environ. Microbiol. 58:4068-4071, 1992). Genes fcbA and fcbB encode 4-CBA-coenzyme A (CoA) ligase and 4-CBA-CoA dehalogenase, respectively, whereas the function of fcbC is not known. We subcloned fcbC and expressed it in Escherichia coli, and we purified and characterized the FcbC protein. A substrate activity screen identified benzoyl-CoA thioesters as the most active substrates. Catalysis of 4-HBA-CoA hydrolysis to 4-HBA and CoA occurred with a kcat of 6.7 s−1 and a Km of 1.2 μM. The kcat pH rate profile for 4-HBA-CoA hydrolysis indicated optimal activity over a pH range of 6 to 10. The amino acid sequence of the FcbC protein was compared to other sequences contained in the protein sequence data banks. A large number of sequence homologues of unknown function were identified. On the other hand, the 4-HBA-CoA thioesterases isolated from 4-CBA-degrading Pseudomonas strains did not share significant sequence identity with the FcbC protein, indicating early divergence of the thioesterase-encoding genes.  相似文献   

14.
The kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei were studied with log-phase formate-grown cultures. The progress of formate degradation was followed by the formyltetrahydrofolate synthetase assay for formate and fitted to the integrated form of the Michaelis-Menten equation. The Km and Vmax values for Methanobacterium formicicum were 0.58 mM formate and 0.037 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanobacterium formicicum was 26 μM. The Km and Vmax values for Methanospirillum hungatei were 0.22 mM and 0.044 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanospirillum hungatei was 15 μM. The apparent Km for formate by formate dehydrogenase in cell-free extracts of Methanospirillum hungatei was 0.11 mM. The Km for H2 uptake by cultures of Methanobacterium formicicum was 6 μM dissolved H2. Formate and H2 were equivalent electron donors for methanogenesis when both substrates were above saturation; however, H2 uptake was severely depressed when formate was above saturation and the dissolved H2 was below 6 μM. Formate-grown cultures of Methanobacterium formicicum that were substrate limited for 57 h showed an immediate increase in growth and methanogenesis when formate was added to above saturation.  相似文献   

15.
The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high.  相似文献   

16.
We investigated the mechanisms of uptake of 2-chlorobenzoate (2-CBa) and 2-hydroxybenzoate (2-HBa) by Pseudomonas huttiensis strain D1. Uptake was monitored by assaying intracellular accumulation of 2-[UL-ring-14C]CBa and 2-[UL-ring-14C]HBa. Uptake of 2-CBa showed substrate saturation kinetics with an apparent Km of 12.7 ± 2.6 μM and a maximum velocity (Vmax) of 9.76 ± 0.78 nmol min−1 mg of protein−1. Enhanced rates of uptake were induced by growth on 2-CBa and 2-HBa, but not by growth on benzoate or 2,5-di-CBa. Intracellular accumulations of 2-CBa and 2-HBa were 109- and 42-fold greater, respectively, than the extracellular concentrations of these substrates and were indicative of uptake mediated by a transporter rather than driven by substrate catabolism (“metabolic drag”). Results of competitor screening tests indicated that the substrate range of the transporter did not include other o-halobenzoates that serve as growth substrates for strain D1 and for which the metabolism was initiated by the same dioxygenase as 2-CBa and 2-HBa. This suggested that multiple mechanisms for substrate uptake were coupled to the same catabolic enzyme. The preponderance of evidence from tests with metabolic inhibitors and artificial electrochemical gradients suggested that 2-CBa uptake was driven by ATP hydrolysis. If so, the 2-CBa transporter would be the first of the ATP binding cassette type implicated in uptake of haloaromatic acids.  相似文献   

17.
An enzyme catalyzing the O-methylation of acetovanillone (3-methoxy-4-hydroxyacetophenone) by S-adeno-sylmethionine was isolated from Phanerochaete chrysosporium and purified 270-fold by ultrafiltration, anion-exchange chromatography, and gel filtration. The enzyme exhibited a pH optimum between 7 and 9 and was rapidly denatured at temperatures above 55°C. The Km values for acetovanillone and S-adenosylmethionine were 34 and 99 μM, respectively. S-Adenosylhomocysteine acted as a powerful competitive inhibitor of S-adenosylmethionine, with a Ki of 41 μM. The enzyme was also susceptible to inhibition by thiol reagents and low concentrations of heavy metal ions. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the enzyme was monomeric and had a molecular weight of approximately 53,000. Substrate specificity studies showed that 3-methoxy- and 3,5-dimethoxy-substituted 4-hydroxy-benzaldehydes, -benzoic acids, and -acetophenones were the preferred substrates for the enzyme. The corresponding 3,4-dihydroxy compounds were methylated relatively slowly, while the 3-hydroxy-4-methoxy compounds were almost inactive as substrates. Substituents in both the 2 and 4 positions relative to the hydroxyl group appeared to be essential for significant enzyme attack of a substrate. Provided that certain steric criteria were satisfied, the nature of the substituent was not critical. Hence, xenobiotic compounds such as 2,4-dichlorophenol and 2,4-dibromophenol were methylated almost as readily as acetovanillone. However, an extended side chain in the 4 position was not compatible with activity as a substrate, and neither homovanillic, caffeic, nor ferulic acid was methylated. The substrate range of the O-methyltransferase tends to imply a role in the catabolism or detoxification of lignin degradation products such as vanillic and syringic acids.  相似文献   

18.
Strain DCB-1 is a strict anaerobe capable of the reductive dechlorination of chlorobenzoates. The effect of dechlorination on the yield of pure cultures of DCB-1 was tested. Cultures were incubated with formate or H2 as electron donors and CO2 as a putative carbon source. Relative to control cultures with benzoate, cultures which dechlorinated 3-chlorobenzoate and 3,5-dichlorobenzoate had higher yields measured both as protein and cell density. On the media tested the apparent growth yield was 1.7 to 3.4 g cell protein per mole Cl- removed. Dechlorination also stimulated formate oxidation by growing cultures. Resuspended cells required an electron donor for dechlorination activity, with either formate or elemental iron serving this function. Resuspended cells did not require an electron acceptor for formate consumption, but reductive dechlorination of 3CB to benzoate stoichiometrically stimulated oxidation of formate to CO2. These results indicate that DCB-1 conserves energy for growth by coupling formate, and probably, H2 oxidation to reductive dechlorination.Non-standard abbreviations 3CB 3-chlorobenzoate - 35DCB 3,5-dichlorobenzoate - PCF Propionibacterium sp. culture fluid  相似文献   

19.
A phenol-degrading methanogenic enrichment was successfully immobilized in agar as shown by the stoichiometric conversion of phenol to CH4 and CO2. The enrichment contained members of three physiological groups necessary for the syntrophic mineralization of phenol: a phenol-oxidizing bacterium, a Methanothrix-like bacterium, and an H2-utilizing methanogen. The immobilization technique resulted in the cells being embedded in a long, thin agar strand (1 mm in diameter by 2 to 50 cm in length) that resembled spaghetti. Immobilization had three effects as shown by a comparative kinetic analysis of phenol degradation by free versus immobilized cells. (i) The maximum rate of degradation was reduced from 14.8 to 10.0 μg of phenol per h; (ii) the apparent Km for the overall reaction was reduced from 90 to 46 μg of phenol per ml, probably because of the retention of acetate, H2 and CO2 in the proximity of immobilized methanogens; and (iii) the cells were protected from substrate inhibition caused by high concentrations of phenol, which increased the apparent Ki value from 900 to 1,725 μg of phenol per ml. Estimates for the kinetic parameters Km, Ki, and Vmax were used in a modified substrate inhibition model that simulated rates of phenol degradation for given phenol concentrations. The simulated rates were in close agreement with experimentally derived rates for both stimulatory and inhibitory concentrations of phenol.  相似文献   

20.
The anaerobic biodegradation of picloram (3,5,6-trichloro-4-amino-2-pyridinecarboxylic acid) in freshwater sediment was favored under methanogenic conditions but not when sulfate or nitrate was available as a terminal electron acceptor. Under the former conditions, more than 85% of the parent substrate (340 μM) was removed from nonsterile incubations in 30 days, following a 50-day acclimation period. Concomitant with substrate decay, an intermediate transiently accumulated in the sediment slurries. By liquid chromatography-mass spectrometry, the intermediate was identified as an isomer of dichloro-4-amino-2-pyridinecarboxylic acid. Proton nuclear magnetic resonance evidence suggested that a chlorine was reductively removed from the parent substrate at the position meta to the nitrogen heteroatom. Upon continued incubation, the dechlorinated product was transformed into an unidentified compound which accumulated and resisted further decay. The addition of sulfate or bromoethanesulfonic acid to sediment slurries inhibited picloram dehalogenation, but molybdate reversed the inhibitory effect of sulfate on pesticide metabolism. These findings help clarify the fate of a halogenated nitrogen heterocyclic herbicide in anaerobic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号