首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dihydrofolate reductase encoded by plasmid pUK1123, which confers only a moderate level of trimethoprim resistance on its host, has been isolated and characterized. This enzyme, designated type IV, differs markedly from all previously described plasmid dihydrofolate reductases. It has a relatively high molecular weight of 46,700 as measured by gel filtration and, unlike previous plasmid dihydrofolate reductases, its synthesis is induced in the presence of increasing concentrations of trimethoprim. It is only slightly resistant to trimethoprim but is competitively inhibited by this drug with an inhibitor binding constant of 63 nM. In addition, the enzyme has a relatively low affinity for the substrate, dihydrofolate (Km = 37 microM). This is the first report of a plasmid trimethoprim resistance mechanism resulting from the induced synthesis of a large molecular weight dihydrofolate reductase which is only slightly resistant to trimethoprim. The possible origins of the type IV enzyme are discussed.  相似文献   

2.
Characterization of Candida albicans dihydrofolate reductase   总被引:3,自引:0,他引:3  
Dihydrofolate reductase from Candida albicans was purified 31,000-fold and characterized. In addition, the C. albicans dihydrofolate reductase gene was cloned into a plasmid vector and expressed in Escherichia coli, and the enzyme was purified from this source. Both preparations showed a single protein-staining band with a molecular weight of about 25,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzymes were stable and had an isoelectric point of pH 7.1 on gel isoelectric focusing. Kinetic characterization showed that the enzymes from each source had similar turnover numbers (about 11,000 min-1) and Km values for NADPH and dihydrofolate of 3-4 microM. Like other eukaryotic dihydrofolate reductases, the C. albicans enzyme exhibited weak binding affinity for the antibacterial agent trimethoprim (Ki = 4 microM), but further characterization showed that the inhibitor binding profile of the yeast and mammalian enzymes differed. Methotrexate was a tight binding inhibitor of human but not C. albicans dihydrofolate reductase; the latter had a relatively high methotrexate Ki of 150 pM. The yeast and vertebrate enzymes also differed in their interactions with KCl and urea. These two agents activate vertebrate dihydrofolate reductases but inhibited the C. albicans enzyme. The sequence of the first 36 amino-terminal amino acids of the yeast enzyme was also determined. This portion of the C. albicans enzyme was more similar to human than to E. coli dihydrofolate reductases (50% and 30% identity, respectively). Some key amino acid residues in the C. albicans sequence, such as E-30 (human enzyme numbering), were "vertebrate-like" whereas others, such as I-31, were not. These results indicate that there are physical and kinetic differences between the eukaryotic mammalian and yeast enzymes.  相似文献   

3.
Vectors for cloning promoter-DNA fragments were derived from pTP 30-5 which was constructed in our previous work (M. Iwakura et al. (1982) J. Biochem. 91, 1205). The selection was based on the expression of trimethoprim resistance of transformed bacteria in which the enhancement of dihydrofolate reductase production was directed by the cloned promoter. A linear relationship between the content of dihydrofolate reductase and the strength of trimethoprim resistance was observed. It is suggested that the promoter activities can be estimated by trimethoprim resistance without measuring the enzyme activities.  相似文献   

4.
A plasmid-encoded dihydrofolate reductase that originated in a clinical isolate of Salmonella typhimurium (phage type 179) moderately resistant to trimethoprim has been isolated and characterized. The dihydrofolate reductase (called type III) was purified to homogeneity using a combination of gel filtration, hydrophobic chromatography, and methotrexate affinity chromatography. Polyacrylamide gel electrophoresis under denaturing and nondenaturing conditions indicated that the enzyme is a 16,900 molecular weight monomeric protein. Kinetic analyses showed that trimethoprim is a relatively tight binding inhibitor (Ki = 19 nM) competitive with dihydrofolate. The enzyme is also extremely sensitive to methotrexate inhibition (Ki = 9 pM) and has a high affinity for dihydrofolate (Km = 0.4 microM). The sequence of the first 20 NH2-terminal residues of the protein shows 50% homology with the trimethoprim-sensitive chromosomal Escherichia coli dihydrofolate reductase and suggests that the two enzymes may be closely related. This is the first example of a plasmid encoding for a monomeric dihydrofolate reductase only moderately resistant to trimethoprim, and a resistance mechanism, dependent in part on the high dihydrofolate affinity of the type III enzyme, is proposed.  相似文献   

5.
Several independent, spontaneous rifampin-resistant mutants of Bacillus subtilis were isolated and found to have an increased resistance to trimethoprim, an inhibitor of dihydrofolate reductase. This increased resistance in the rif mutants was the result of a specific threefold increase in the activity of dihydrofolate reductase, since six other enzymes examined remained unchanged. This increased level of dihydrofolate reductase and the trimethoprim resistance were cotransformed (100%) with the rif marker. These results suggest that the RNA polymerase is altered in its recognition of the gene that specifies dihydrofolate reductase.  相似文献   

6.
Summary DNA fragments of the R factor R388 which renders E. coli resistant to trimethoprim by inducing a trimethoprim resistant dihydrofolate reductase (Amyes and Smith, 1974) were inserted into plasmids and screened for the expression of the trimethoprim resistance gene. By means of a two step deletion procedure a 1770 bp EcoRI/BamH1 fragment was isolated which conferred drug resistance and which was found to induce the synthesis of the same dihydrofolate reductase as the parental R factor. Gene dosage experiments indicated that the induction was due to the presence of a dihydrofolate reductase structural gene on the 1770 bp fragment. The gene could be assigned to a segment which was less than 1200 bp long. The 1770 bp fragment and a recombinant plasmid consisting of pSF2124 and part of R388 were mapped with several restriction nucleases. The R factor induced enzyme was partially purified from a strain carrying a multicopy recombinant plasmid into which the 1770 bp fragment was inserted and which induced high levels of dihydrofolate reductase. The enzyme was found to be stable at 100°. Some aspects of the synthesis of dihydrofolate reductase are discussed.Dedicated to Professor Peter Karlson on the occasion of his 60th birthday  相似文献   

7.
8.
A 2.0-kb fragment of Bacillus subtilis 168 chromosomal DNA has been shown to contain both the dihydrofolate reductase (dfrA) and thymidylate synthase B (thyB) genes. In addition to the close proximity of dfrA and thyB, the expression of these genes seems to be regulated coordinately. Mutations that map near or within the dfrA gene resulted in coordinate increases in both dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase, was added to growing cells, both dihydrofolate reductase and thymidylate synthase B activities increased coordinately.  相似文献   

9.
Natural competence ofStreptococcus pneumoniae was used to locate and enrich DNA restriction fragments, biologically active for transformation of thymidine-deficient to thymidine-proficient cells. Mutations in the dihydrofolate reductase gene are accompanied by resistance to the drug trimethoprim (Tp). A 6.5-kb region of the pneumococcal chromosome encompassing the dihydrofolate reductase gene has been cloned in plasmid pLS1.Escherichia coli mutants, resistant to Tp, became fully sensitive to the drug when they harbored the recombinant plasmid. The pneumococcaldfrA mutation has been mapped within a 500-bp DNA region.  相似文献   

10.
R W Davies  A M Gronenborn 《Gene》1982,17(2):229-233
The Lactobacillus casei gene for dihydrofolate reductase has been cloned in Escherichia coli using the multicopy vector pBR322. A restriction map of the cloned DNA has been prepared. The cloned DNA directs the synthesis of L. casei dihydrofolate reductase in E. coli and confers trimethoprim and methotrexate resistance.  相似文献   

11.
12.
R-factor trimethoprim resistance mechanism: an insusceptible target site   总被引:16,自引:0,他引:16  
R-factor R388 increases the resistance of Escherichia coli to trimethoprim by 10,000 fold, and mediates the synthesis of an addional dihydrofolate reductase that is less susceptible to trimethoprim by a similar order of magnitude. The dihydrofolate reductase conferred by the R-factor was of a larger molecular weight than the wild-type enzyme and exhibited a different pattern of response to trimethoprim inhibition. This is thought to be the first example of an R-factor conferring an altered target site mechanism of resistance to a chemotherapeutic agent.  相似文献   

13.
The dihydrofolate reductase from Mycobacterium phlei was purified and characterized; it has an Mr of 15 000 and a pI of 4.8. It is competitively inhibited by both methotrexate and trimethoprim, although the affinity is less than for other bacterial dihydrofolate reductases.  相似文献   

14.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8--7.2 muM and for NADPH 6.5--8.0 muM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10--20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthetase and 10-formyltetrahydrofolate synthetase (formate: tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

15.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

16.
The binding of trimethoprim to dihydrofolate reductase from L1210 mouse lymphoma cells has been studied by measuring the changes in chemical shift of nuclei of the ligand that accompanying binding. The 6- and 2',6'-proton chemical shifts of bound trimethoprim have been determined by transfer of saturation experiments, and the 2-carbon chemical shift has been determined by using [2-13C]trimethoprim. The changes in proton chemical shift are substantially smaller than those accompanying binding to bacterial dihydrofolate reductase [Cayley, P. J., Albrand, J. P., Feeney, J., Robert, G. C. K., Piper, E. A., & Burgen, A. S. V. (1979) Biochemistry 18, 3886]. It is shown that this difference arises largely from the fact that trimethoprim adopts different conformations when bound to mammalian and to bacterial dihydrofolate reductase. The proton chemical shifts are interpreted in terms of ring-current contributions from the two aromatic rings of trimethoprim itself and the nearby aromatic amino acid residues of the enzyme. The latter have been located by using the refined crystallographic coordinates of the Lactobacillus casei and Escherichia coli reductases in their complexes with methotrexate [Bolin, J. T., Filman, D. J., Matthews, D. A. & Kraut, J. (1982) J. Biol. Chem. 257, 13650], under the assumption that, as indicated by the 13C chemical shifts, the diaminopyrimidine ring of trimethoprim binds in the same way as does the corresponding part of methotrexate. With use of these assumptions, the conformation of trimethoprim bound to the dihydrofolate reductases from L. casei, E. coli, and L1210 cells has been calculated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
High resistance to trimethoprim mediated by the several hundredfold overproduction of the drug target enzyme, dihyrofolate reductase, in a clinically isolated Escherichia coli strain, 1810, was cloned onto several vector plasmids and seemed to be comprised of a single dihydrofolate reductase gene, which by DNA-DNA hybridization and restriction enzyme digestion mapping was very similar to the corresponding gene of E. coli K-12. Determination of mRNA formation in the originally isolated resistant strain and strains with cloned trimethoprim resistance determinant demonstrated an about 15-fold increase in production of dihydrofolate reductase mRNA compared with that in E. coli K-12. This was explained by the occurrence of a promoter up mutation in the resistant isolate accompanied by changes in the restriction enzyme digestion pattern found by comparison with the corresponding pattern from E. coli K-12.  相似文献   

18.
Synergy was found between sulphonamide and trimethoprim in ratios 1:1 and 20:1 against both trimethoprim-sensitive enterococci (17 strains) and trimethoprim-resistant enterococci (23 strains). Many of these strains were resistant to kanamycin, tetracycline, streptomycin and/or erythromycin. Resistance to kanamycin, but not to trimethoprim, was clearly associated with the presence of a plasmid of molecular weight 35-45 Md. Elimination of this plasmid in three out of four highly trimethoprim resistant strains brought about loss of resistance to both kanamycin and trimethoprim. Furthermore, it was possible to transfer trimethoprim resistance from three of five highly resistant strains, but not from three strains with low-grade resistance. It is concluded that resistance to trimethoprim in enterococci can be encoded on a plasmid, and that the gene responsible may be on a transposon. No significant differences were found between the specific activities of dihydrofolate reductase from trimethoprim-sensitive and -resistant strains. The enzyme from resistant strains was several orders of magnitude less susceptible to inhibition by trimethoprim than was the enzyme from sensitive strains.  相似文献   

19.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

20.
The E28D variant of dihydrofolate reductase from Moritella profunda was generated and found to have the same K i (within error) for the competitive inhibitor trimethoprim as the wild type enzyme. Contrary to a previous claim in the literature, Glu 28 is therefore not the cause of the reduced affinity for trimethoprim relative to dihydrofolate reductase from Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号