首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biphasic contact analysis is essential to obtain a complete understanding of soft tissue biomechanics, and the importance of physiological structure on the joint biomechanics has long been recognised; however, up to date, there are no successful developments of biphasic finite element contact analysis for three-dimensional (3D) geometries of physiological joints. The aim of this study was to develop a finite element formulation for biphasic contact of 3D physiological joints. The augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The biphasic contact method was implemented in the commercial software COMSOL Multiphysics 4.2® (COMSOL, Inc., Burlington, MA). The accuracy of the implementation was verified using 3D biphasic contact problems, including indentation with a flat-ended indenter and contact of glenohumeral cartilage layers. The ability of the method to model multibody biphasic contact of physiological joints was proved by a 3D knee model. The 3D biphasic finite element contact method developed in this study can be used to study the biphasic behaviours of the physiological joints.  相似文献   

3.
A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head cartilage experience maximum tensile and compressive stresses are at the cartilage-bone interface, away from the center of the contact area.  相似文献   

4.
5.
Quantification of the mechanical behavior of hyperelastic membranes in their service configuration, particularly biological tissues, is often challenging because of the complicated geometry, material heterogeneity, and nonlinear behavior under finite strains. Parameter estimation thus requires sophisticated techniques like the inverse finite element method. These techniques can also become difficult to apply, however, if the domain and boundary conditions are complex (e.g. a non-axisymmetric aneurysm). Quantification can alternatively be achieved by applying the inverse finite element method over sub-domains rather than the entire domain. The advantage of this technique, which is consistent with standard experimental practice, is that one can assume homogeneity of the material behavior as well as of the local stress and strain fields. In this paper, we develop a sub-domain inverse finite element method for characterizing the material properties of inflated hyperelastic membranes, including soft tissues. We illustrate the performance of this method for three different classes of materials: neo-Hookean, Mooney Rivlin, and Fung-exponential.  相似文献   

6.

We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel–Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol’s multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system’s haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.

  相似文献   

7.
The goal of this study is to quantify changes in knee joint contact behavior following varying degrees of the medial partial meniscectomy. A previously validated 3D finite element model was used to simulate 11 different meniscectomies. The accompanying changes in the contact pressure on the superior surface of the menisci and tibial plateau were quantified as was the axial strain in the menisci and articular cartilage. The percentage of medial meniscus removed was linearly correlated with maximum contact pressure, mean contact pressure, and contact area. The lateral hemi-joint was minimally affected by the simulated medial meniscectomies. The location of maximum strain and location of maximum contact pressure did not change with varying degrees of partial medial meniscectomy. When 60% of the medial meniscus was removed, contact pressures increased 65% on the remaining medial meniscus and 55% on the medial tibial plateau. These data will be helpful for assessing potential complications with the surgical treatment of meniscal tears. Additionally, these data provide insight into the role of mechanical loading in the etiology of post-meniscectomy osteoarthritis.  相似文献   

8.
To date, voxel-based finite element models have not been feasible for contact problems, owing to the inherent stair-step boundary discontinuities. New preprocessing techniques are reported herein to mesh these boundaries smoothly, for purposes of contact stress analysis. Further, new techniques are reported to concentrate the mesh resolution automatically near the articular surface, thus reducing the problem size to levels compatible with executing nonlinear problems on contemporary engineering workstations. Close approximations to Hertzian analytical solutions were obtained for spherical and cylindrical geometries meshed in this manner, and an illustrative anatomical contact problem of the human hip joint is presented.  相似文献   

9.
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.  相似文献   

10.
The indentation problem of a thin layer of hydrated soft tissue such as cartilage or meniscus by a circular plane-ended indenter is investigated. The tissue is represented by a biphasic continuum model consisting of a solid phase (collagen and proteoglycan) and a fluid phase (interstitial water). A finite element formulation of the linear biphasic continuum equations is used to solve an axisymmetric approximation of the indentation problem. We consider stress-relaxation problems for which analytic solution is intractable; where the indenter is impermeable (solid) and/or when the interface between the indenter and tissue is perfectly adhesive. Thicknesses corresponding to a thin and thick specimen are considered to examine the effects of tissue thickness. The different flow, pressure, stress and strain fields which are predicted within the tissue, over time periods typically used in the mechanical testing of soft tissues, will be presented. Results are compared with the case of a porous free-draining indenter with a perfectly lubricated tissue-indenter interface, for which an analytic solution is available, to show the effects of friction at the tissue-indenter interface, and the effects of an impermeable indenter. While these effects are present for both thin and thick tissues, they are shown to be more significant for the thin tissue. We also examine the effects of the stiffness of the subchondral bone on the response of the soft tissue and demonstrate that the subchondral bone substrate can be modeled as a rigid, impermeable boundary. The effects of a curved tissue-subchondral bone interface, and the early time response are also studied. For physiologically reasonable levels of curvature, we will show that the curved tissue-subchrondal bone interface has negligible influence on the tissue response away from the interface. In addition, the short-time stress-relaxation responses of the tissue (e.g., at times less than 1s) demonstrate the essential role of the fluid phase in supporting the load applied to the tissue, and by extrapolation to shorter times characteristics of normal joint motion, suggest the essential role of a biphasic model in representing soft tissue behavior in joint response.  相似文献   

11.
Finite element (FE) modelling has been proposed as a tool for estimating fracture risk and patient-specific FE models are commonly based on computed tomography (CT). Here, we present a novel method to automatically create personalised 3D models from standard 2D hip radiographs. A set of geometrical parameters of the femur were determined from seven ap hip radiographs and compared to the 3D femoral shape obtained from CT as training material; the error in reconstructing the 3D model from the 2D radiographs was assessed. Using the geometry parameters as the input, the 3D shape of another 21 femora was built and meshed, separating a cortical and trabecular compartment. The material properties were derived from the homogeneity index assessed by texture analysis of the radiographs, with focus on the principal tensile and compressive trabecular systems. The ability of these FE models to predict failure load as determined by experimental biomechanical testing was evaluated and compared to the predictive ability of DXA. The average reconstruction error of the 3D models was 1.77 mm (±1.17 mm), with the error being smallest in the femoral head and neck, and greatest in the trochanter. The correlation of the FE predicted failure load with the experimental failure load was r2=64% for the reconstruction FE model, which was significantly better (p<0.05) than that for DXA (r2=24%). This novel method for automatically constructing a patient-specific 3D finite element model from standard 2D radiographs shows encouraging results in estimating patient-specific failure loads.  相似文献   

12.
13.
Several authors have employed finite element analysis for stress and strain analysis in orthopaedic biomechanics. Unfortunately, the definition of three-dimensional models is time consuming (mainly because of the manual 3D meshing process) and consequently the number of analyses to be performed is limited. The authors have investigated a new patient-specific method allowing automatically 3D mesh generation for structures as complex as bone for example. This method, called the mesh-matching (M-M) algorithm, generated automatically customized 3D meshes of anatomical structures from an already existing model. The M-M algorithm has been used to generate FE models of 10 proximal human femora from an initial one which had been experimentally validated. The automatically generated meshes seemed to demonstrate satisfying results.  相似文献   

14.
The V–W exponential hyperelastic model is adopted to describe the instantaneous elastic response of the periodontal ligament (PDL). The general theoretical framework of constitutive modeling is described based on nonlinear continuum mechanics, and the elasticity tensor used to develop UMAT subroutine is formulated. Nanoindentation experiment is performed to characterize mechanical properties of an adult pig PDL specimen. Then the experiment is simulated by using the finite element (FE) analysis. Meanwhile, the optimized material parameters are identified by the inverse FE method. The good agreement between the simulated results and experimental data demonstrates that the V–W model is capable of describing the mechanical behavior of the PDL. Therefore, the model and its implementation into FE code are validated. By using the model, we simulate the tooth movement under orthodontic loading to predict the mechanical responses of the PDL. The results show that local concentrations of stress and strain in the PDL are found.  相似文献   

15.
Extracortical bone growth with osseointegration of bone onto the shaft of massive bone tumour implants is an important clinical outcome for long-term implant survival. A new computational algorithm combining geometrical shape changes and bone adaptation in 3D Finite Element simulations has been developed, using a soft tissue envelope mesh, a novel concept of osteoconnectivity, and bone remodelling theory. The effects of varying the initial tissue density, spatial influence function and time step were investigated. The methodology demonstrated good correspondence to radiological results for a segmental prosthesis.  相似文献   

16.
Over 90 percent of the more than 250,000 hip fractures that occur annually in the United States are the result of falls from standing height. Despite this, the stresses associated with femoral fracture from a fall have not been investigated previously. Our objectives were to use three-dimensional finite element models of the proximal femur (with geometries and material properties based directly on quantitative computed tomography) to compare predicted stress distributions for one-legged stance and for a fall to the lateral greater trochanter. We also wished to test the correspondence between model predictions and in vitro strain gage data and failure loads for cadaveric femora subjected to these loading conditions. An additional goal was to use the model predictions to compare the sensitivity of several imaging sites in the proximal femur which are used for the in vivo prediction of hip fracture risk. In this first of two parts, linear finite element models of two unpaired human cadaveric femora were generated. In Part II, the models were extended to include nonlinear material properties for the cortical and trabecular bone. While there was poor correspondence between strain gage data and model predictions, there was excellent agreement between the in vitro failure data and the linear model, especially using a von Mises effective strain failure criterion. Both the onset of structural yielding (within 22 and 4 percent) and the load at fracture (within 8 and 5 percent) were predicted accurately for the two femora tested. For the simulation of one-legged stance, the peak stresses occurred in the primary compressive trabeculae of the subcapital region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In Part I we reported the results of linear finite element models of the proximal femur generated using geometric and constitutive data collected with quantitative computed tomography. These models demonstrated excellent agreement with in vitro studies when used to predict ultimate failure loads. In Part II, we report our extension of those finite element models to include nonlinear behavior of the trabecular and cortical bone. A highly nonlinear material law, originally designed for representing concrete, was used for trabecular bone, while a bilinear material law was used for cortical bone. We found excellent agreement between the model predictions and in vitro fracture data for both the onset of bone yielding and bone fracture. For bone yielding, the model predictions were within 2 percent for a load which simulated one-legged stance and 1 percent for a load which simulated a fall. For bone fracture, the model predictions were within 1 percent and 17 percent, respectively. The models also demonstrated different fracture mechanisms for the two different loading configurations. For one-legged stance, failure within the primary compressive trabeculae at the subcapital region occurred first, leading to load transfer and, ultimately, failure of the surrounding cortical shell. However, for a fall, failure of the cortical and trabecular bone occurred simultaneously within the intertrochanteric region. These results support our previous findings that the strength of the subcapital region is primarily due to trabecular bone whereas the strength of the intertrochanteric region is primarily due to cortical bone.  相似文献   

18.
Standard methods for predicting bone’s mechanical response from quantitative computer tomography (qCT) scans are mainly based on classical h-version finite element methods (FEMs). Due to the low-order polynomial approximation, the need for segmentation and the simplified approach to assign a constant material property to each element in h-FE models, these often compromise the accuracy and efficiency of h-FE solutions. Herein, a non-standard method, the finite cell method (FCM), is proposed for predicting the mechanical response of the human femur. The FCM is free of the above limitations associated with h-FEMs and is orders of magnitude more efficient, allowing its use in the setting of computational steering. This non-standard method applies a fictitious domain approach to simplify the modeling of a complex bone geometry obtained directly from a qCT scan and takes into consideration easily the heterogeneous material distribution of the various bone regions of the femur. The fundamental principles and properties of the FCM are briefly described in relation to bone analysis, providing a theoretical basis for the comparison with the p-FEM as a reference analysis and simulation method of high quality. Both p-FEM and FCM results are validated by comparison with an in vitro experiment on a fresh-frozen femur.  相似文献   

19.
Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP.  相似文献   

20.
Carpal tunnel syndrome (CTS) is among the most important of the family of musculoskeletal disorders caused by chronic peripheral nerve compression. Despite the large body of research in many disciplinary areas aimed at reducing CTS incidence and/or severity, means for objective characterization of the biomechanical insult directly responsible for the disorder have received little attention. In this research, anatomical image-based human carpal tunnel finite element (FE) models were constructed to enable study of median nerve mechanical insult. The formulation included large-deformation multi-body contact between the nerve, the nine digital flexor tendons, and the carpal tunnel boundary. These contact engagements were addressed simultaneously with nerve and tendon fluid-structural interaction (FSI) with the synovial fluid within the carpal tunnel. The effects of pertinent physical parameters on median nerve stress were explored. The results suggest that median nerve stresses due to direct structural contact are typically far higher than those from fluid pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号