首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and differentiation of the gonads of embryonic alligators incubated at 30 °C (100% female producing) and 33 °C (100% male producing) was investigated histologically. The stage of development of the gonad and differentiation into an ovary or a testis occurred at essentially the same time at both temperatures. This contrasts with the overall development of the embryos which was slower at the lower temperature. A few days prior to differentiation, gonads grew more quickly at 33 °C than they did at 30 °C. However, once differentiated into a presumptive testis, gonads reduced in volume so that at hatching presumptive testes were smaller than presumptive ovaries. It is hypothesized that synchrony/asynchrony of development of the gonad and the rest of the embryo may account for temperature-dependent sex determination.  相似文献   

2.
Wild type embryos of the newt Pleurodeles waltl were used to realize parabiosis, a useful model to study the effect of endogenous circulating hormones on gonad development. The genotypic sex of each parabiont (ZZ male or ZW female) was determined early from the analysis of the sex chromosome borne marker peptidase-1. In ZZ/ZZ and ZW/ZW associations, gonads develop according to genetic sex. In ZZ/ZW associations, the ZZ gonads differentiate as normal testes while ZW gonads development shows numerous alterations. At the beginning of sex differentiation, these ZW gonads possess a reduced number of germ cells and a reduced expression of steroidogenic factor 1 and P450-aromatase mRNAs when compared to gonads from ZW/ZW associations. During gonad differentiation, conversely to the control situation, these germ cells do not enter meiosis as corroborated by chromatin status and absence of the meiosis entry marker DMC1; the activity of the estradiol-producing enzyme P450-aromatase is as low as in ZZ gonads. At adulthood, no germ cells are observed on histological sections, consistently with the absence of VASA expression. At this stage, the testis-specific marker DMRT1 is expressed only in ZZ gonads, suggesting that the somatic compartment of the ZW gonad is not masculinized. So, when exposed to ZZ hormones, ZW gonads reach the undifferentiated status but the ovary differentiation does not occur. This gonad is inhibited by a process affecting both somatic and germ cells. Additionally, the ZW gonad inhibition does not occur in the case of an exogenous estradiol treatment of larvae.  相似文献   

3.
This study investigated the possibility that the histological process of gonadal sex differentiation in pejerrey (Odontesthes bonariensis), a fish with marked temperature-dependent sex determination (TSD), occurs through a predictable gradient of differentiation as opposed to simultaneous or random differentiation throughout the gonad. For this purpose, fish reared at 17 degrees, 24 degrees, and 29 degrees C from hatching were sampled weekly for 11 weeks, fixed, and prepared for histological observation of serial cross-sections of the gonads. The thermal manipulation and sampling procedure ensured the availability of males and females at various degrees of gonadal sex differentiation. The location of the differentiated area(s) was estimated in the right and left gonads of 17 females and 14 males selected among the available specimens so as to represent increasing degrees of differentiation. The analysis revealed that sex differentiation followed a gradient from the anterior to posterior areas of the gonads regardless of sex. Furthermore, plotting of the degree of sex differentiation in the right gonad as a function of the degree of differentiation of the left gonad clearly showed that sex differentiation only begins in the right gonad when 10-30% of the length of the left gonad has already differentiated. The mean rostral edge of the differentiated areas in females was 9% and 10.8% for the left and right gonads, respectively, while for males these values were 7.3% and 7.0%, respectively. Thus, it was established that ovarian and testicular differentiation in pejerrey follow both a cephalocaudal and a left-to-right gradient. Possible explanations for this gradient and its relevance for TSD in pejerrey, that is, as a mechanism to prevent discrepant differentiation of male and female features within the same gonad, are discussed.  相似文献   

4.
To evaluate the possible role of germ cells on sex differentiation of the gonads in vertebrates, the teleost fish, medaka ( Oryzias latipes ), was used to generate a gonad without germ cells. The germ cell-deficient medaka reveals multiple effects of germ cells on the process of sex differentiation. The previously isolated mutant medaka, hotei , with the excessive number of germ cells may support the contention that the proliferation of germ cells is related to feminization of the gonad. Futhermore, we show that two modes of proliferation for either maintenance of germ cells or commitment to gametogenesis are important components of the sex differentiation of medaka developing gonads. An intimate cross talk between germ cells and gonadal somatic cells during the sex differentiation will be discussed.  相似文献   

5.
Catadromous eels enter fresh water as sexually undifferentiated glass eels and develop into males and females before migrating back to sea as silver eels. Females develop ovaries directly from the ambiguous primordial gonad whereas males pass through a transitional intersexual stage before developing testes. Eels have sex-specific life-history strategies. Males may grow faster than females initially, but this difference is soon reversed and females attain a greater age- and size-at-metamorphosis than males. Male fitness is maximized by maturing at the smallest size that allows a successful spawning migration (a time-minimizing strategy) whereas females adopt a more flexible size-maximizing strategy that trades off pre-reproductive mortality against fecundity. Although heteromorphic sex chromosomes have been identified in some species, the sex of developing gonads is labile and gender is determined principally by environmental factors. Individuals experiencing rapid growth prior to gonad differentiation tend to develop as males, whereas eels that grow slowly initially are more likely to develop as females. Paradoxically, males tend to predominate under conditions of high density, which may be because a male “grow quickly, mature early” strategy increases an individual’s chances of survival during periods of intraspecific competition. High temperatures and saline conditions have also been proposed to favor development as males but experimental studies have failed to demonstrate a clear effect of either on sex determination. High proportions of female silver eels migrating from some upstream areas, lakes and large rivers may be due to low population density or poor conditions for growth in these habitats. Manipulating sex ratios in favor of females has the potential to increase eel production in aquaculture and to buffer natural populations against fishing pressure. Sex steroids (oestrogens and phytoestrogens) have a strong feminizing effect on undifferentiated individuals and are most effective when targeted at younger eels and administered at high doses for prolonged periods. Modifying local environmental conditions, in particular reducing eel density and limiting interference and social stress, may also promote the development of females. Further research into the timing and mechanisms of sex determination in eels is required to effectively and efficiently manipulate sex for conservation and/or economic benefit.  相似文献   

6.
The mechanisms by which sex is genetically determined are bewilderingly diverse and appear to change rapidly during evolution.( 1 ) What makes the sex‐determining process so prone to perturbations? Two recent articles( 2 , 3 ) explore theoretically the role of genetic conflict in sex determination evolution. Both studies use the idea that selection on sex‐determining genes may act differently in parents and in offspring and they suggest that the resulting conflict can drive changes in sex‐determining mechanisms. BioEssays 23:477–480, 2001. © 2001 John Wiley & Sons, Inc.  相似文献   

7.
In the conventional model of sex differentiation in placental mammals, a switch is envisaged to steer the indifferent gonad into the path of either testicular or ovarian development. The immediate cause of the switch is thought to be the presence or absence of Sertoli cells, which in turn is controlled by the presence or absence of the testis-determining factor on the Y chromosome (TDF in humans, Tdy in mice). Quantitative investigations indicate, however, that the rate of growth of XY gonads is faster than that of XX gonads before the formation of Sertoli cells, and furthermore, that XY embryos develop faster than XX embryos long before the formation of gonadal ridges. Since the genetic constitution of the sex chromosomes appears to manifest itself from the earliest embryonic stages onwards, the concept of indifferent gonads being switched into alternate pathways becomes inappropriate. A model is proposed in which gonadal differentiation depends on developmental thresholds: the formation of Sertoli cells needs to occur by a particular stage in time in a sufficiently developed gonad, failing which the gonad will enter the ovarian pathway. While TDF is the principal factor enhancing the rate of gonadal growth, other factors which influence development rates can modulate the probability of a gonad becoming either a testis or an ovary.  相似文献   

8.
9.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

10.
Estrogens play a key role in sexual differentiation of both the gonads and external traits in birds. The production of estrogen occurs via a well-characterised steroidogenic pathway, which is a multi-step process involving several enzymes, including cytochrome P450 aromatase. In chicken embryos, the aromatase gene (CYP19A1) is expressed female-specifically from the time of gonadal sex differentiation. To further explore the role of aromatase in sex determination, we ectopically delivered this enzyme using the retroviral vector RCASBP in ovo. Aromatase overexpression in male chicken embryos induced gonadal sex-reversal characterised by an enlargement of the left gonad and development of ovarian structures such as a thickened outer cortex and medulla with lacunae. In addition, the expression of key male gonad developmental genes (DMRT1, SOX9 and Anti-Müllerian hormone (AMH)) was suppressed, and the distribution of germ cells in sex-reversed males followed the female pattern. The detection of SCP3 protein in late stage sex-reversed male embryonic gonads indicated that these genetically male germ cells had entered meiosis, a process that normally only occurs in female embryonic germ cells. This work shows for the first time that the addition of aromatase into a developing male embryo is sufficient to direct ovarian development, suggesting that male gonads have the complete capacity to develop as ovaries if provided with aromatase.  相似文献   

11.
12.
13.
In fish of the Squalius alburnoides complex, hybridisation and polyploidy have affected sex ratios, resulting in strong correlations between sex and genotype. The preponderance of females among triploids and the occurrence of an all male lineage among diploids seem to imply that sex ratio deviations should have a strong genetic basis. Until now, no information has been gathered regarding the molecular basis of sex determination in this intricate hybrid system. Thus, putative regulatory elements of the cascade that potentially are involved in sex determination in S. alburnoides have to be investigated. Being reported to have an important role in teleost sex determination, and more particularly in male gonad development, the anti-Müllerian hormone, amh was a good initial candidate. Here we report the isolation, cloning and characterization of the amh ortholog in S. alburnoides and the ancestral species S. pyrenaicus. In adult S. alburnoides and S. pyrenaicus of both sexes, amh shows a gonad specific expression pattern, restricted to the Sertoli cell lineage in testis and to granulosa cells in ovaries. During development, it plays an early role in male gonad differentiation in S. alburnoides. Overall the observed patterns are similar to what has been reported in other teleost species. This suggests a conserved role of amh and implies that its expression dynamics cannot be directly responsible for the sex ratio deviations reported in S. alburnoides. It is possible that a conjunction of other factors could be contributing for sex ratio imbalance. The present results constitute the starting point in the characterization of the S. alburnoides sex determination cascade, a process that we expect to shed some light on the molecular basis of sex distribution, within the context of hybrid system evolution.  相似文献   

14.
In many egg-laying reptiles, the incubation temperature of the egg determines the sex of the offspring, a process known as temperature-dependent sex determination (TSD). In TSD sex determination is an “all or none” process and intersexes are rarely formed. How is the external signal of temperature transduced into a genetic signal that determines gonadal sex and channels sexual development? Studies with the red-eared slider turtle have focused on the physiological, biochemical, and molecular cascades initiated by the temperature signal. Both male and female development are active processes—rather than the crganized/default system characteristic of vertebrates with genotypic sex determination—that require simultaneous activation and suppression of testis- and ovary-determining cascades for normal sex determination. It appears that temperature accomplishes this end by acting on genes encoaing for steroidogenic enzymes and steroid hormone receptors and modifying the endocrine microenvironment in the embryo. The temperature experienced in development also has long-term functional outcomes in addition to sex determination. Research with the leopard gecko indicates that incubation temperature as well as steroid hormones serve as organizers in shaping the adult phenotype, with temperature modulating sex hormone action in sexual differentiation. Finally, practical applications of this research have emerged for the conservation and restoration of endangered egg-laying reptiles as well as the embryonic development of reptiles as biomarkers to monitor the estrogenic effects of common environmental contaminants. © 1994 Wiley-Liss, Inc.  相似文献   

15.
At the initial stages of sex differentiation (7.5 and 8.5 days of incubation), chick embryo gonads were treated directly with testosterone or estradiol-17 beta in organ cultures. Chemically-defined media containing cholesterol as a steroid precursor were used. The differentiation of gonads in the 10 to 12-day controls, cultured in media containing no hormones, was close to that of gonads of equivalent age in ovo. Testosterone added to the medium exerted an inhibitory effect on the cortex of the female gonad and a masculinizing one on its medulla. The results of estradiol treatment confirmed the known feminizing effect of that hormone on the male gonad, the meiotic prophase in the genetically male germ cells being initiated in the induced cortex. These data may be interpreted in favour of a bihormonal theory of gonadal sex differentiation in birds, where the predominantly-synthesized male or female hormone in the gonad determines the male or female pattern of development of the corresponding gonad.  相似文献   

16.
Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens. To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor, in gonadal aromatase activity and in morphology and structure of the female genital system. Fadrozole was injected into eggs on day four of incubation, and its effects were examined during the embryonic development and for eight months after hatching. In control females, aromatase activity in the right and the left gonad was high in the middle third of embryonic development, and then decreased up to hatching. After hatching, aromatase activity increased in the left ovary, in particular during folliculogenesis, whereas in the right regressing gonad, it continued to decrease to reach testicular levels at one month. In treated females, masculinization of the genital system was characterized by the maintenance of the right gonad and its differentiation into a testis, and by the differentiation of the left gonad into an ovotestis or a testis; however, in all individuals, the left Müllerian duct and the posterior part of the right Müllerian duct were maintained. In testes and ovotestes, aromatase activity was lower than in gonads of control females (except in the right gonad as of one month after hatching) but remained higher than in testes of control and treated males. Moreover, in ovotestes, aromatase activity was higher in parts displaying follicles than in parts devoid of follicles. The main structural changes in the gonads during sex reversal were partial (in ovotestes) or complete (in testes) degeneration of the cortex in the left gonad, and formation of an albuginea and differentiation of testicular cords/tubes in the two gonads. Testicular cords/tubes transdifferentiated from ovarian medullary cords and lacunae whose epithelium thickened and became Sertolian. Transdifferentiation occurred all along embryonic and postnatal development; thus, new testicular cords/tubes were continuously formed while others degenerated. The sex reversed gonads were also characterized by an abundant fibrous interstitial tissue and abnormal medullary condensations of lymphoid-like cells; in the persisting testicular cords/tubes, spermatogenesis was delayed and impaired. Related to aromatase activity, persistence of too high levels of estrogens can explain the presence of oviducts, gonadal abnormalities and infertility in sex reversed females.  相似文献   

17.
The objective of this study was to determine the sexual pattern of the Indian dascyllus Dascyllus carneus . After an initially undifferentiated state, gonads of D. carneus developed an ovarian lumen and primary growth stage oocytes, and subsequently cortical-alveolus stage oocytes. From ovaries with cortical-alveolus stage oocytes and from more developed ovaries, some gonads redifferentiated into testes. From a sample of 163 individuals, two had a gonad containing degenerating vitellogenic oocytes and proliferating spermatogenic tissue, nine had a gonad containing degenerating cortical-alveolus stage oocytes and spermatogenic tissue, and five had a gonad with degenerating primary growth stage oocytes and spermatogenic tissue. The size of these individuals overlapped greatly with the size range of mature females, suggesting that at least in some individuals, redifferentiation toward a testis occurred after spawning as females. This indicates that D. carneus is a functional, diandric protogynous hermaphrodite. Removal of a dominant male(s) did not induce a sex change in any of the ranking females in the laboratory and field groups. There was no difference in the number of chases and signal jumps performed by the ranking female between control and experimental field groups, or before and after removal of the male. However, the sizes of the ranking females were at or beyond the size range of individuals with a mixed-stage gonad, suggesting that the developmental window for female-to-male sex change may not be open ended. In 41 of 43 field groups, in which sex of fish was determined histologically or by the shape of the urogenital papilla, one to several highest size ranks were occupied by males, followed by one to several females. Mature males, however, were not limited to the highest ranks and occurred at various lower size ranks within groups. Individuals with a mixed-stage gonad also occupied various size ranks within groups.  相似文献   

18.
19.
Male-specific migration of cells from the mesonephric kidney into the embryonic gonad is required for testis formation in the mouse. It is unknown, however, whether this process is specific to the mouse embryo or whether it is a fundamental characteristic of testis formation in other vertebrates. The signalling molecule/s underlying the process are also unclear. It has previously been speculated that male-specific cell migration might be limited to mammals. Here, we report that male-specific cell migration is conserved between mammals (mouse) and birds (quail-chicken) and that it involves proper PDGF signalling in both groups. Interspecific co-cultures of embryonic quail mesonephric kidneys together with embryonic chicken gonads showed that quail cells migrated specifically into male chicken gonads at the time of sexual differentiation. The migration process is therefore conserved in birds. Furthermore, this migration involves a conserved signalling pathway/s. When GFP-labelled embryonic mouse mesonephric kidneys were cultured together with embryonic chicken gonads, GFP+ mouse cells migrated specifically into male chicken gonads and not female gonads. The immigrating mouse cells contributed to the interstitial cell population of the developing chicken testis, with most cells expressing the endothelial cell marker, PECAM. The signalling molecule/s released from the embryonic male chicken gonad is therefore recognised by both embryonic quail and mouse mesonephric cells. A candidate signalling molecule mediating the male-specific cell migration is PDGF. We found that PDGF-A and PDGF receptor-alpha are both up-regulated male-specifically in embryonic chicken and mouse gonads. PDGF signalling involves the phosphotidylinositol 3-kinase (PIK3) pathway, an intracellular pathway proposed to be important for mesonephric cell migration in the mammalian gonad. We found that a component of this pathway, PI3KC2alpha, is expressed male-specifically in developing embryonic chicken gonads at the time of sexual differentiation. Treatment of organ cultures with the selective PDGF receptor signalling inhibitor, AG1296 (tyrphostin), blocked or impaired mesonephric cell migration in both the mammalian and avian systems. Taken together, these studies indicate that a key cellular event in gonadal sex differentiation is conserved among higher vertebrates, that it involves PDGF signalling, and that in mammals is an indirect effect of Sry expression.  相似文献   

20.
Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex‐specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene–gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321–336, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号