首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
This study assessed the capacity of Jatropha curcas to physiologically adjust to salinity. Seedlings were exposed to increasing NaCl concentrations (25, 50, 75 and 100 mm ) for 15 days. Treatment without NaCl was adopted as control. Shoot dry weight was strongly reduced by NaCl, reaching values of 35% to 65% with 25 to 100 mm NaCl. The shoot/root ratio was only affected with 100 mm NaCl. Relative water content (RWC) increased only with 100 mm NaCl, while electrolyte leakage (EL) was much enhanced with 50 mm NaCl. The Na+ transport rate to the shoot was more affected with 50 and 100 mm NaCl. In parallel, Cl? transport rate increased with 75 and 100 mm NaCl, while K+ transport rate fell from 50 mm to 100 mm NaCl. In roots, Na+ and Cl? transport rates fell slightly only in 50 mm (to Na+) and 50 and 100 mm (to Cl?) NaCl, while K+ transport rate fell significantly with increasing NaCl. In general, our data demonstrate that J. curcas seedlings present changes in key physiological processes that allow this species to adjust to salinity. These responses are related to accumulation of Na+ and Cl? in leaves and roots, K+/Na+ homeostasis, transport of K+ and selectivity (K–Na) in roots, and accumulation of organic solutes contributing to osmotic adjustment of the species.  相似文献   

2.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

3.
Abstract Radioisotope equilibration techniques have been used to determine the intracellular concentration of K+, Na+ and Cl?, together with the unidirectional ion fluxes across the plasmalemma of Porphyra purpurea. Influx and efflux of 42K+, 24Na+ and 36C1? are biphasic, the rapid, initial uptake and loss of tracer from individual thalli being attributable to desorption from extracellular regions. Cellular fluxes are slower and monophasic, cells discriminating in favour of K+ and Cl? and against Na+. A comparison between the equilibrium potential of individual ion species and the measured membrane potential demonstrates that there is an active component of K+ and Cl? influx and Na+ efflux. ‘Active’ uptake and ‘passive’ loss of K+ and Cl? are reduced when plants are kept in darkness, suggesting that a fraction of the transport of K+ and Cl? may be due to ‘exchange diffusion’ (K+/K+ and Cl?/Cl?antiport).  相似文献   

4.
Malaria parasites grow within erythrocytes, but are also free in host plasma between cycles of asexual replication. As a result, the parasite is exposed to fluctuating levels of Na+ and K+, ions assumed to serve important roles for the human pathogen, Plasmodium falciparum. We examined these assumptions and the parasite's ionic requirements by establishing continuous culture in novel sucrose‐based media. With sucrose as the primary osmoticant and K+ and Cl? as the main extracellular ions, we obtained parasite growth and propagation at rates indistinguishable from those in physiological media. These conditions abolish long‐known increases in intracellular Na+ via parasite‐induced channels, excluding a requirement for erythrocyte cation remodelling. We also dissected Na+, K+ and Cl? requirements and found that unexpectedly low concentrations of each ion meet the parasite's demands. Surprisingly, growth was not adversely affected by up to 148 mM K+, suggesting that low extracellular K+ is not an essential trigger for erythrocyte invasion. At the same time, merozoite egress and invasion required a threshold ionic strength, suggesting critical electrostatic interactions between macromolecules at these stages. These findings provide insights into transmembrane signalling in malaria and reveal fundamental differences between host and parasite ionic requirements.  相似文献   

5.
This study aimed to determine the effects of different rootstocks and soilless media on the plant growth and yield of cucumber and on the leaf ion (Na+, Ca++, K+ and Cl?) concentrations. Four commercial rootstocks (TZ148 F1, RS841 F1, Nun9075 F1 and Avar F1) and two local landraces (Local-1 and Local-3 belonging to Cucurbita moschata L.) were used as rootstock and grafted and non grafted plants were tested in three different salinity conditions (2.5 dS m?1, 5.0 dS m?1 and 7.5 dS m?1) on three different soilless media (cocopeat, perlite and rockwool) in spring period under greenhouse conditions. Salinity found to reduce root and shoot dry weight, and yield of plants in all growing media. TZ148, Nun9075 and Local-3 are found to improve tolerance of cucumber plants to saline conditions (5.0 and 7.5 dS m?1) when used as rootstocks. Root and shoot dry weight, yield, Ca++ in leaves and K+/Na+ ratio in leaves were significantly decreased, but Na+ and Cl? concentration in leaves were increased under salt stress. Rootstock potential of Local-3 is also found to be quite good for cucumber under saline conditions.  相似文献   

6.
Summary The Ehrlich tumor cell possesses and anion-cation cotransport system which operates as a bidirectional exchanger during the physiological steady state. This cotransport system, like that associated with the volume regulatory mechanism (i.e. coupled net uptake of Cl+Na+ and/or K+) is Cl-selective and furosemide-sensitive, suggesting the same mechanism operating in two different modes. Since Na+ has an important function in the volume regulatory response, its role in steady-state cotransport was investigated. In the absence of Na+, ouabain-insensitive K+ and DIDS-insensitive Cl transport (KCl cotransport) are low and equivalent to that found in 150mm Na+ medium containing furosemide. Increasing the [Na+] results in parallel increases in K+ and Cl transport. The maximum rate of each (18 to 20 meq/(kg dry wt)·min) is reached at about 20mm Na+ and is maintained up to 55mm. Thus, over the range 1 to 55mm Na+ the stoichiometry of KCl cotransport is 11. In contrast to K+ and Cl, furosemide-sensitive Na+ transport is undetectable until the [Na+] exceeds 50mm. From 50 to 150mm Na+, it progressively rises to 7 meq/(kg dry wt)·min, while K+ and Cl transport decrease to 9 and 16 meq/(kg dry wt)·min, respectively. Thus, at 150mm Na+ the stoichiometric relationship between Cl, Na+ and K+ is 211. These results are consistent with the proposal that the Cl-dependent cation cotransport system when operating during the steady state mediates the exchange of KCl for KCl or NaCl for NaCl; the relative proportion of each determined by the extracellular [Na+].  相似文献   

7.
Sunflower is a major oil seed crop worldwide, and it is also an important crop in Mediterranean areas where salinity is an increasing problem. In this paper, the effect of saline irrigation water on seed yield and quality of sunflower was evaluated. A pot experiment was carried out over two crop seasons on two hybrids – a standard one (Carlos) and a high oleic one (Tenor) – submitted to five salinity levels of irrigation water (0.6, 3, 6, 9 and 12 dS m?1). Soil salinity was monitored over the entire crop cycle, and leaf ion content was determined at maturity. Tenor showed higher Na+ and Mg2+ content but lower K+ values. No difference between the two hybrids was observed for Cl? content. A progressive increase in leaf Na+, K+ and Cl? contents and Na+/K+ ratio with increasing salinity level was observed. Seed weight per head, 1000 achene weight, number of seeds per plant and oil yield significantly decreased under salt stress in both hybrids. The percent seed yield decrease was higher per unit increase in electrical conductivity of irrigation water, ECw (8%), than per unit increase in electrical conductivity of saturated‐soil extracts, ECe (5%). Concerning oil fatty acid composition, the main significant difference as result of salt stress was a progressive increase in oleic acid content, from 82.2% to 86.7% for Tenor and from 21.8% to 27.3% for Carlos, which was consistent with a decrease in linoleic acid content, from 5.9% to 3% for Tenor and from 66% to 61.3% for Carlos. These results confirm the possible inhibition of oleate desaturase under salt stress.  相似文献   

8.
Transport of 86Rb+/K+, 22Na+, 36Cl?, and [3H]indole acetic acid (IAA) has been studied on suspension-cultured cells of the parsley, Petroselinum crispum (Mill) Nym. By compartmental analysis two intracellular compartments of K+, Na+, and Cl? have been identified and ascribed to the cytoplasm and vacuole; half-times of exchange were around 200 s and 5 h, respectively. According to the Ussing-Teorell flux equation, active transport is required for the influx into the cytoplasm at the plasmalemma (K+, Cl?) and the tonoplast (K+, Na+, Cl?). The plasmalemma permeability pattern, PK:PNa:PCl=1.00:0.24:0.38, features an increased chloride permeability compared with cells from higher plant tissues. IAA uptake showed an exponential timecourse, was half-maximal after 10 min, and a linear function of the IAA concentration from 10?9 to 10?5 M. IAA and 2,4-dichlorophenoxy acetic acid reduce the apparent influx of K+, Na+, Cl? during the initial 30 min after addition and subsequently accelerate both in- and efflux of these ions. We discuss that auxins could affect the ion fluxes in a complex way, e.g. by protonophorous activity and by control of the hypothetical proton pump.  相似文献   

9.
Concentrations of ions and sucrose in the vacuolar sap of Chara canescens growing in an oligohaline lake (1.5 ‰) were estimated over the main growth period of the plants. During fructification vacuolar sap contained a mean of 41 mol m?3 (range 10.2–61.8) sucrose. The mean turgor pressure was 239 mosmol kg?1 (range 219–264). In long- and short-term experiments these plants were subjected to increasing salinities up to 22 ‰. When salinity was increased from 1.5 to 4.4 ‰ turgor pressure was restored to only 80 % of the initial value. This reduced level of turgor pressure was maintained up to a salinity of 22 ‰. The increase in vacuolar osmotic potential was due to the monovalent ions Na+, K+ and Cl?. The relative amounts of Na+ and K+ participating in the regulation process were dependent on external salinity. The regulatory mechanisms observed in the brackish water species Ch. canescens are compared with those reported from freshwater and euryhaline species.  相似文献   

10.
Electrolyte distribution in rabbit superior cervical ganglion   总被引:7,自引:2,他引:5  
Abstract— Superior cervical ganglia of the rabbit were removed and analysed for Na+, K+, Ca2+, Mg2+ and Cl?. The mean electrolyte content in μmole/g wet wt. was as follows: Na+, 64.7 ± 1.3; K+, 65.1 ± 2.7; Ca2+, 3.71 ± 0.28; Mg2+, 3.70 ± 0.50; and Cl?, 50.15 ± 2.26. Water content was 0.76 ± 0.01 ml/g wet wt. Extracellular space was 0.37 ± 0.01 ml/g, and the vascular space 0.0238 ± 0.0002. The mean resting potential of the rabbit superior cervical ganglion was – 68.6 mv. After correction for extracellular electrolyte content, the potential differences, ENa, EK and Ecl, were estimated to be +33.6 mv, –96.9 mv and -41.1 mv, respectively, in the ganglia. Permeability coefficients for K+, Na+, and Cl? were estimated to be 1:0.06:0.02. Replacement of sodium in physiological saline solution by lithium results in a displacement of 94 per cent of the sodium content of the ganglion and 69 per cent of the potassium after 30 min of equilibration.  相似文献   

11.
We have previously reported on the biochemical properties of a Na+,K+,2Cl?-cotransport in HeLa cells and here we deal with aspects of its physiological regulation. Na+,K+,2Cl?-cotransport in HeLa cells was studied by 86Rb+ influx and 86Rb+/22Na+ efflux measurements. The effects of rat atrial natriuretic peptide (ANP), isoproterenol, and amino acids on 86Rb+ flux, mediated by the bumet-anide-sensitive Na+, K+, 2Cl?-cotransport system and the ouabain-sensitive Na+/K+-pump, were investigated. ANP reduced bumetanide-sensitive 86Rb+ influx under isotonic as well as under hypertonic conditions. Similar decrease of bumetanide-sensitive 86Rb+ influx was observed in the presence of 8-bromo-cGMP, while neither isoproterenol as a β-receptor agonist nor 8-bromo-cAMP-could alter bumetanide-sensitive 86Rb+ influx. Furthermore, efflux of 86Rb+ and 22Na+ was greatly reduced in the presence of bumetanide and ANP. Together with our recent findings, showing functionally active, high affinity receptors for ANP on HeLa cells (Kort and Koch, Biochim. Biophys. Res. Commun. 168:148–154, 1990), this study indicates that ANP participates in the regulation of the Na+, K+, 2Cl?-cotransport system in HeLa cells. Further measurements revealed that amino acids as present in the growth medium (Joklik's minimal essential medium) and the amino acid derivative α-methyl-aminoisobutyric acid (metAlB, 1 and 5 mM, respectively) also reduced Na+, K+, 2Cl?-cotransport-mediated 86Rb+ uptake and diminished the stimulatory effect of hypertonicity on the cotransporter. In addition, the Na+/K+-pump was markedly stimulated in the presence of amino acids, while neither ANP and 8-Br-cGMP nor isoproterenol and 8-Br-cAMP had a significant effect on the activity of the Na+/K+-pump.  相似文献   

12.
Effects of sodium chloride on tobacco plants   总被引:7,自引:1,他引:6  
Abstract The effect of salinity on the growth and ion concentrations in a number of tobacco cultivars is described. Sodium chloride, at a concentration of 200 mol m?3, hardly affected the fresh weight, but significantly reduced the dry weight. The difference in the response of fresh and dry weights to salt was due to a change in succulence (water per unit leaf area); the latter increased with increasing leaf Na+ and Cl? concentration. Under saline conditions, increasing the external Na+: Ca? ratio by decreasing the Ca2+ concentration increased the accumulation of Na+ and Cl? into the leaf tissue.  相似文献   

13.
A constrained molecular dynamics technique has been used to study the structures and dynamics of the solvation shells of three sodium halides, namely sodium chloride (Na+–Cl?), sodium bromide (Na+–Br?) and sodium iodide (Na+–I?) in DMSO–MeOH mixtures. In the case of Na+–Cl? and Na+–Br?, Na+ is preferentially solvated by DMSO and Cl? and Br? are preferentially solvated by methanol in the contact ion pair (CIP) state. In the solvent-assisted ion pair (SAIP) configuration, Na+ ions of Na+–Cl? and Na+–Br? are preferentially solvated by methanol and Cl? and Br? also show preferential solvation by methanol over DMSO. In the case of Na+–I?, the only preferential solvation is in the SAIP state for I? ion by methanol. These observations are supported by the calculated excess coordination numbers and spatial density maps. The heights of the transition states barriers for CIPs and SAIPs/solvent-shared ion pairs (SSHIPs) are significantly affected when the mole fraction of methanol (xMeOH) changes from 0.0 to 0.25 because of a significant increase in the methanol density around halides. From the analysis of angular distribution functions of DMSO and methanol around the cations and anions, it is seen that DMSO and methanol molecules are present in parallel dipolar orientations (with respect to cation–solvent vector) in the first coordination shell of these three ion pairs at the CIP and SAIP states. Methanol molecules are nearly in an antiparallel (with respect to ion–solvent vector) orientation around the three halide ions.  相似文献   

14.
Reisin I.L., Rabito C.A. and Cantiello H.F. 1981. Water and electrolyte balance in protoscoleces of Echinococcus granulosus incubated in vitro: effect of metabolic inhibitors. International Journal for Parasitology 11: 405–410. The effects of metabolic inhibitors on the Na+, K+, Cl? and water balance of protoscoleces of Echinococcus granulosus (sheep strain) were studied in vitro. The protoscoleces were incubated at 37°C in Ringer Krebs solution for 3 h in the presence of iodoacetate, 3 mM (IA); potassium cyanide, 3 mm (KCN); 2?4 dinitrophenol, 0.2 mm (DNP); ouabain, 10?M or ethacrynic acid 0.5 mm. The effects of IA and/or KCN on the water and electrolyte balance were tested at high (0.95 × 105Pa) and low (0.05 × 105 Pa) oxygen tensions. Inhibitors produced a decrease in K+ as well as an increase in Na+ contents. At both high and low O2 tensions the Na+ balance was greatly altered by IA, the action of which could be already observed during the first hour of treatment. The cations did not reach a steady state balance during 3 h of incubation. At high oxygen tension Na+ and K+ balance was also altered by KCN or DNP though their actions were not as marked as that of IA. Ouabain affected the Na+ and K+ contents that reached new steady state distribution between 1.5 and 3 h of treatment while water and electrolyte contents were not modified by ethacrynic acid. In all the experiments no changes in Cl? and water contents were observed. It is concluded that the energy required to maintain the Na?K balance mechanisms within protoscoleces is largely provided by the anaerobic glycolytic pathway and that the aerobic oxidative pathway contribution to the energy balance is only accessory.  相似文献   

15.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

16.
Agropyron elongatum [Host. (Beauv.)] [cv. Arizona Glendale, was grown in liquid medium salinized with either NaCl, KCI, or a 50:50 mixture of these two salts at osmotic potentials ranging from 0 to –1.6 MPa. The amount of growth in 21 days was measured, and extracts were made of the shoots at this time. The extracts were assayed for low-molecular-weight organic compounds (glucose, fructose, sucrose, be-taine, proline) and inorganic solutes (Na+, K+, Cl?, P.). The purpose was to determine if there was any correlation between the harmful effect of salinity on growth and the concentrations of solutes in tissues. Growth inhibition of A. elongatum was roughly proportional to the osmotic potential of the growth medium and was independent of the ionic composition of the salinizing salts. Total monovalent cation (the sum of Na+ and K+) concentrations and the ratio of these two cations in leaves were mainly a function of the ionic compostion of the salt in growth media, and, to a lesser degree, of osmotic potentials. F At an osmotic potential of –0.2 MPa, total monovalent cation in leaves was the same as in non-stressed plants. However, if the salinizing salt contained NaCl, there was an increase in foliar Na+ with a balancing decrease in K+. At stress levels between –0.4 and –1,6 MPa, and, if the media were salinized with either 100% NaCl or a 50:50 mixture of NaCl and KCI, total monovalent cation concentrations remained constant at a value that was twice that in non-stressed plants. Although total monovalent cation concentrations were equal in plants grown under these two salinity conditions, the K+/Na+ ratios shifted from a value of 1:2 in plants grown in 100% NaCl to 3:1 in plants subjected to the 50:50 mixture. If 100% KCI was used to salinize media, total monovalent cation was 80% of its concentration in NaCl-treated plants in the range of –0.4 to -1.2 MPa. At –1.6 MPa due to 100% KCI, total monovalent cation was double that in plants subjected to -0.4 MPa. In the range of osmotic potentials from–0.2 to –1.2 MPa, the chloride:cation ratio was 1:2. At –1.6 MPa the ratio changed to 3:4. Proline started accumulating in leaves of A. elongatum when the tissue concentration of total monovalent cation exceeded 200 μ (g fresh weight)?1. Above this threshold value of total monovalent cation, the proline concentration of leaves was 6% of the amount of total monovalent cation that exceeded 200 umol (g fresh weight)1.  相似文献   

17.
Abstract: Electron probe x-ray microanalysis (EPMA) was used to measure water content (percent water) and dry weight elemental concentrations (in millimoles per kilogram) of Na, K, Cl, and Ca in axoplasm and mitochondria of rat optic and tibial nerve myelinated axons. Myelin and cytoplasm of glial cells were also analyzed. Each anatomical compartment exhibited characteristic water contents and distributions of dry weight elements, which were used to calculate respective ionized concentrations. Free axoplasmic [K+] ranged from ≈155 mM in large PNS and CNS axons to ≈120–130 mM in smaller fibers. Free [Na+] was ≈15–17 mM in larger fibers compared with 20–25 mM in smaller axons, whereas free [Cl?] was found to be 30–55 mM in all axons. Because intracellular Ca is largely bound, ionized concentrations were not estimated. However, calculations of total (free plus bound) aqueous concentrations of this element showed that axoplasm of large CNS and PNS axons contained ≈0.7 mM Ca, whereas small fibers contained 0.1–0.2 mM. Calculated ionic equilibrium potentials were as follows (in mV): in large CNS and PNS axons, EK = ?105, ENa = 60, and ECl = ?28; in Schwann cells, EK = ?107, ENa = 33, and ECl = ?33; and in CNS glia, EK = ?99, ENa = 36, and ECl = ?44. Calculated resting membrane potentials were as follows (in mV, including the contribution of the Na+,K+-ATPase): large axons, about ?80; small axons, about ?72 to ?78; and CNS glia, ?91. ECl is more positive than resting membrane potential in PNS and CNS axons and glia, indicating active accumulation. Direct EPMA measurement of elemental concentrations and subsequent calculation of ionized fractions in axons and glia offer fundamental neurophysiological information that has been previously unattainable.  相似文献   

18.
The Cl? transport properties of the luminal border of bovine tracheal epithelium have been investigated using a highly purified preparation of apical plasma membrane vesicles. Transport of Cl? into an intravesicular space was demonstrated by (1) a linear inverse correlation between Cl? uptake and medium osmolarity and (2) complete release of accumulated Cl? by treatment with detergent. The rate of Cl? uptake was highly temperature-sensitive and was enhanced by exchange diffusion, providing evidence for a carrier-mediated transport mechanism. Transport of Cl? was not affected by the ‘loop’ diuretic bumetanide or by the stilbene-derivative anion-exchange inhibitors SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid) and DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid). In the presence of the impermeant cation, tetramethylammonium (TMA+), uptake of Cl? was minimal; transport was stimulated equally by the substitution of either K+ or Na+ for TMA+. Valinomycin in the presence of K+ enhanced further Cl? uptake, while amiloride reduced Na+-stimulated Cl? uptake towards the minimal level observed with TMA+. These results suggest the following conclusions: (1) the tracheal vesicle membrane has a finite permeability to both Na+ and K+; (2) the membrane permeability to the medium counterion determines the rate of Cl? uptake; (3) Cl? transport is not specifically coupled with either Na+ or K+; and, finally (4) Cl? crosses the tracheal luminal membrane via an electrogenic transport mechanism.  相似文献   

19.
NaCl胁迫对滨梅扦插苗生物量和水分积累的影响   总被引:1,自引:0,他引:1  
以1年生滨梅(Prunus maritima Marshall)扦插苗为实验材料,在盆栽条件下用质量浓度为0.15%、0.29%、0.58%、0.88%、1.17%、1.46%的NaCl溶液进行盐胁迫处理,测定胁迫后根、茎、叶Na+、K+含量以及全叶、一年生茎、二年生茎和根系生物量、含水率、根系活力变化,探讨滨梅的抗盐胁迫机制。结果显示:(1)盐胁迫80d后,随着盐胁迫强度提高,滨梅植株根、茎、叶Na+含量显著提高,而其根、茎K+含量显著降低,根、茎、叶K+/Na+值显著降低;根Na+含量在低于0.58%NaCl胁迫下显著高于茎、叶,而在高于0.58%NaCl胁迫下却表现为叶Na+含量显著高于根、茎。(2)滨梅根、茎、叶生物量均随盐胁迫强度的提高呈先增加后减少的趋势;随着盐胁迫时间的延长,茎、叶生物量在低于0.58%NaCl胁迫下均呈积累趋势,且茎生物量在0.58%NaCl胁迫下显著提高,而根、一年生茎、叶生物量在高于0.58%NaCl胁迫下均显著下降。(3)滨梅茎、叶含水率均随盐胁迫强度的增加呈先增加后减少的趋势,而随着胁迫时间的延长呈逐渐减少趋势;根系活力及根含水率均随盐胁迫强度的提高而增加,但根含水率随着胁迫时间的延长变化不明显。由此可见,滨梅能通过根系稀释并蓄积Na+,保护地上部分正常生长,当进入根系的Na+量超过吸收阈值时,Na+迅速在叶中积累储存,且叶中较高含量的K+对Na+形成了有效的缓冲。  相似文献   

20.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号