首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The European Centre for the Validation of Alternative Methods (ECVAM) designed the Embryonic Stem Cell Test (EST) as a tool for classifying developmentally toxic compounds. An in vitro tool to assess developmental toxicity would be of great value to the pharmaceutical industry to help with toxicity‐associated attrition. METHODS: ECVAM's EST protocol was used, but employing a different mouse embryonic stem cell (ESC) line and an alternative differentiation medium. A subset of the compounds used to validate the EST assay along with a number of in‐house pharmaceutical compounds plus marketed pharmaceutical compounds were used to assess the EST performance with receptor‐mediated compounds. RESULTS: Our results with ECVAM compounds mirrored ECVAM's. Compounds that were developmentally toxic in vivo were classified by the EST as moderate risk. Overall, the accuracy was 75% with the current set of data and the predictivity of low‐, moderate‐, and high‐risk compounds was 90, 71, and 60% while the precision was 59, 86, and 100%, respectively. Interestingly, a number of the non‐developmentally toxic compounds had values for the 3T3 IC50 values, which were lower than the ESC IC50 and ID50, a situation not taken into account by ECVAM when designing the EST algorithm. CONCLUSIONS: The assay as currently constructed has a significant false‐positive rate (~40%), but a very low false‐negative rate (~7%). Additional moderate‐ and high‐risk compounds need to be assessed to increase confidence, accuracy, and understanding in the EST's predictivity. Birth Defects Res (Part B), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
BACKGROUND: There continue to be many efforts around the world to develop assays that are shorter than the traditional embryofetal developmental toxicity assay, or use fewer or no mammals, or use less compound, or have all three attributes. Each assay developer needs to test the putative assay against a set of performance standards, which traditionally has involved testing the assays against a list of compounds that are generally recognized as “positive” or “negative” in vivo. However, developmental toxicity is highly conditional, being particularly dependent on magnitude (i.e. dose) and timing of exposure, which makes it difficult to develop lists of compounds neatly assigned as developmental toxicants or not. APPROACH: Here we offer an alternative approach for the evaluation of developmental toxicity assays based on exposures. Exposures are classified as “positive” or “negative” in a system, depending on the compound and the internal concentration. Although this linkage to “internal dose” departs from the recent approaches to validation, it fits well with widely accepted principles of developmental toxicology. CONCLUSIONS: This paper introduces this concept, discusses some of the benefits and drawbacks of such an approach, and lays out the steps we propose to implement it for the evaluation of developmental toxicity assays. Birth Defects Res (Part B) 89:526–530, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
A metabolic biomarker‐based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery‐phase detection of potential human developmental toxicants. In this study, metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure‐based biomarker assay using these metabolites, along with a cytotoxicity endpoint, was then developed using a 9‐point dose–response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity, an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy, but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity, 100% specificity). The assay had a high concordance (≥75%) with existing in vivo models, demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.  相似文献   

4.
Information in the 1999 Physician's Desk Reference as well as from the peer-reviewed published literature was used to evaluate the genotoxicity of marketed pharmaceuticals. This survey is a compendium of genotoxicity information and a means to gain perspective on the inherent genotoxicity of structurally diverse pharmaceuticals. Data from 467 marketed drugs were collected. Excluded from analysis were anti-cancer drugs and nucleosides, which are expected to be genotoxic, steroids, biologicals and peptide-based drugs. Of the 467 drugs, 115 had no published gene-tox data. This group was comprised largely of acutely administered drugs such as antibiotics, antifungals, antihistamines decongestants and anesthetics. The remaining 352 had at least one standard gene-tox assay result. Of these, 101 compounds (28.7%) had at least one positive assay result in the pre-ICH/OECD standard four-test battery (bacterial mutagenesis, in vitro cytogenetics, mouse lymphoma assay (MLA), in vivo cytogenetics). Per assay type, the percentage of positive compounds was: bacterial mutagenesis test, 27/323 (8.3%); in vitro cytogenetics 55/222 (24.8%); MLA 24/96 (25%); in vivo cytogenetics 29/252 (11.5%). Of the supplemental genetic toxicology test findings reported, the sister chromatid exchange (SCE) assay had the largest percentage of positives 17/39 (43.5%) and mammalian mutagenesis assays (excluding MLA) had the lowest percentage of positives 2/91 (2.2%). The predictive value of genetic toxicology findings for 2-year bioassay outcomes is difficult to assess since carcinogenicity can occur via non-genotoxic mechanisms. Nevertheless, the following survey findings were made: 201 drugs had both gene-tox data and rodent carcinogenicity data. Of these, 124 were negative and 77 were equivocal or positive for carcinogenicity in at least 1 gender/1 species. Of the 124 non-carcinogens, 100 had no positive gene-tox findings. Of the remaining 24, 19 were positive in in vitro cytogenetics assays. Among the 77 compounds that exhibited equivocal or positive effects in carcinogenesis studies, 26 were positive in gene-tox assays and 51 were negative. Of the 51 negatives, 47 had multiple negative gene-tox assay results suggesting that these are probably non-genotoxic carcinogens. Statistical analyses suggested that no combination of gene-tox assays provided a higher predictivity of rodent carcinogenesis than the bacterial mutagenicity test itself.  相似文献   

5.
6.
A developing organism exposed to a toxicant will have a response that ranges from none to severe (i.e., death or malformation). The response at a given dosage may be termed teratogenic (or developmental toxic) severity and is dependent on exposure conditions. Prenatal/embryo–fetal developmental (EFD) toxicity studies in rodents and rabbits are the most consistent and definitive assessments of teratogenic severity, and teratogenesis screening assays are best validated against their results. A formula is presented that estimates teratogenic severity for each group, including control, within an EFD study. The developmental components include embryonic/fetal death, malformations, variations, and mean fetal weight. The contribution of maternal toxicity is included with multiplication factors to adjust for the extent of mortality, maternal body weight change, and other parameters deemed important. The derivation of the formula to calculate teratogenic severity is described. Various EFD data sets from the literature are presented to highlight considerations to the calculation of the various components of the formula. Each score is compared to the concurrent control group to obtain a relative teratogenic severity. The limited studies presented suggest relative scores of two‐ to <fivefold higher than control have detectable but a low level of teratogenic severity, and scores ≥fivefold higher than control have increasingly more severe teratogenicity. Such scores may help refine the concept of an exposure‐based validation list for use by proponents of screening assays (Daston et al., 2014) by estimating the severity of “positive” exposures, or in other situations by defining the severity of a LOAEL (lowest observed adverse effect level)  相似文献   

7.
BACKGROUND: The rodent whole embryo culture (WEC) system is a well‐established model for characterizing developmental toxicity of test compounds and conducting mechanistic studies. Laboratories have taken various approaches in describing type and severity of developmental findings of organogenesis‐stage rodent embryos, but the Brown and Fabro morphological score system is commonly used as a quantitative approach. The associated score criteria is based upon developmental stage and growth parameters, where a series of embryonic structures are assessed and assigned respective scores relative to their gestational stage, with a Total Morphological Score (TMS) assigned to the embryo. This score system is beneficial because it assesses a series of stage‐specific anatomical landmarks, facilitating harmonized evaluation across laboratories. Although the TMS provides a quantitative approach to assess growth and determine developmental delay, it is limited to its ability to identify and/or delineate subtle or structure‐specific abnormalities. Because of this, the TMS may not be sufficiently sensitive for identifying compounds that induce structure or organ‐selective effects. METHOD: This study describes a distinct morphological score system called the “Dysmorphology Score System (DMS system)” that has been developed for assessing gestation day 11 (approximately 20–26 somite stage) rat embryos using numerical scores to differentiate normal from abnormal morphology and define the respective severity of dysmorphology of specific embryonic structures and organ systems. This method can also be used in scoring mouse embryos of the equivalent developmental stage. RESULT AND CONCLUSION: The DMS system enhances capabilities to rank‐order compounds based upon teratogenic potency, conduct structure‐ relationships of chemicals, and develop statistical prediction models to support abbreviated developmental toxicity screens. Birth Defects Res (Part B) 89:485–492, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The Drosophila embryo has long been a powerful laboratory model for elucidating molecular and genetic mechanisms that control development. The ease of genetic manipulations with this model has supplanted pharmacological approaches that are commonplace in other animal models and cell-based assays. Here we describe recent advances in a protocol that enables application of small molecules to the developing fruit fly embryo. The method details steps to overcome the impermeability of the eggshell while maintaining embryo viability. Eggshell permeabilization across a broad range of developmental stages is achieved by application of a previously described d-limonene embryo permeabilization solvent (EPS1) and by aging embryos at reduced temperature (18 °C) prior to treatments. In addition, use of a far-red dye (CY5) as a permeabilization indicator is described, which is compatible with downstream applications involving standard red and green fluorescent dyes in live and fixed preparations. This protocol is applicable to studies using bioactive compounds to probe developmental mechanisms as well as for studies aimed at evaluating teratogenic or pharmacologic activity of uncharacterized small molecules.  相似文献   

9.
This survey is a compendium of genotoxicity and carcinogenicity information of antihypertensive drugs. Data from 164 marketed drugs were collected. Of the 164 drugs, 65 (39.6%) had no retrievable genotoxicity or carcinogenicity data; this group was comprised largely of drugs marketed in a limited number of countries. The remaining 99 (60.4%) had at least one genotoxicity or carcinogenicity test result. Of these 99, 48 (48.5%) had at least one positive finding: 32 tested positive in at least one genotoxicity assay, 26 in at least one carcinogenicity assay, and 10 gave a positive result in both at least one genotoxicity assay and at least one carcinogenicity assay. In terms of correlation between results of the various genotoxicity assays and absence of carcinogenic activity in both mice and rats 2 of 44 non-carcinogenic drugs tested positive in the in vitro bacterial mutagenesis assay, 2 of 9 tested positive in the mouse lymphoma assay, none of 14 tested positive for gene mutation at the hprt locus, 5 of 25 tested positive in in vitro cytogenetic assays, none of 31 in in vivo cytogenetic assays, and none of 14 in inducing DNA damage and/or repair in in vitro and/or in vivo assays. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, 75 drugs had both genotoxicity and carcinogenicity data; of these 37 (49.3%) were neither genotoxic nor carcinogenic, 14 (18.7%) were non-carcinogens which tested positive in at least one genotoxicity assay, 14 (18.7%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, and 10 (13.3%) were both genotoxic and carcinogenic. Only 42 of the 164 marketed antihypertensives (25.6%) had all data required by the guidelines for testing of pharmaceuticals.  相似文献   

10.
Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.  相似文献   

11.
BACKGROUND: VLA‐4 (Very late antigen 4, integrin α4β1) plays an important role in cell‐cell interactions that are critical for development. Homozygous null knockouts of the α4subunit of VLA‐4 or VCAM‐1 (cell surface ligand to VLA‐4) in mice result in abnormal placental and cardiac development and embryo lethality. Objectives of the current study were to assess and compare the teratogenic potential of three VLA‐4 antagonists. METHODS: IVL745, HMR1031, and IVL984 were each evaluated by the subcutaneous route in standard embryo‐fetal developmental toxicity studies in rats and rabbits. IVL984 was also evaluated in mice. Fetuses were examined externally, viscerally, and skeletally. RESULTS: IVL745 did not cause significant maternal or fetal effects at doses up to 100 or 250 mg/kg/day in rats or rabbits, respectively. HMR1031 treatment resulted in marked maternal toxicity and slight fetal toxicity at the highest tested doses of 200 and 75 mg/kg/day in rats and rabbits, respectively. HMR1031 embryo‐fetal effects consisted of slightly lower body weight and crown‐rump length in rats and minor sternebral defects in rabbits. IVL984 treatment resulted in minimal maternal effects at doses up to 40, 15, and 100 mg/kg/day in rats, rabbits, and mice, respectively (excluding abortions in rabbits). However, marked developmental effects were observed at the lowest tested IVL984 doses, 1, 0.2, and 3 mg/kg/day in rats, rabbits, and mice, respectively. IVL984 embryo‐fetal effects consisted of increased total post‐implantation loss due to early resorptions and high incidences of cardiac malformations and skeletal malformations and/or variations. Notably, spiral septal defects were observed in up to 76% of rat fetuses and up to 58% of rabbit fetuses. CONCLUSIONS: Dramatic differences in teratogenic potential were observed: IVL745 was not teratogenic, HMR1031 caused slight embryo‐fetal effects at maternally‐toxic doses, and IVL984 was a potent teratogen at doses where direct maternal toxicity was limited to abortions in rabbits. Prominent effects of IVL984 included embryo lethality and cardiac malformations including spiral septal defects in three species. Birth Defects Res B 71:55–68, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

12.
In April 2009, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute's (HESI) Developmental and Reproductive Toxicology Technical Committee held a two-day workshop entitled "Developmental Toxicology-New Directions." The third session of the workshop focused on ways to refine animal studies to improve relevance and predictivity for human risk. The session included five presentations on: (1) considerations for refining developmental toxicology testing and data interpretation; (2) comparative embryology and considerations in study design and interpretation; (3) pharmacokinetic considerations in study design; (4) utility of genetically modified models for understanding mode-of-action; and (5) special considerations in reproductive testing for biologics. The presentations were followed by discussion by the presenters and attendees. Much of the discussion focused on aspects of refining current animal testing strategies, including use of toxicokinetic data, dose selection, tiered/triggered testing strategies, species selection, and use of alternative animal models. Another major area of discussion was use of non-animal-based testing paradigms, including how to define a "signal" or adverse effect, translating in vitro exposures to whole animal and human exposures, validation strategies, the need to bridge the existing gap between classical toxicology testing and risk assessment, and development of new technologies. Although there was general agreement among participants that the current testing strategy is effective, there was also consensus that traditional methods are resource-intensive and improved effectiveness of developmental toxicity testing to assess risks to human health is possible. This article provides a summary of the session's presentations and discussion and describes some key areas that warrant further consideration.  相似文献   

13.
The mouse bone marrow micronucleus test: evaluation of 21 drug candidates   总被引:1,自引:0,他引:1  
The mouse bone-marrow micronucleus test is one of the most widely used genetic toxicology assays. In this report the results of testing 21 compounds in the micronucleus test are presented. Of the 21 compounds tested, 3 potential chemotherapeutic agents were identified as strongly clastogenic. In addition, one compound was identified as a weak inducer of micronuclei in the assay. Further testing of this compound in an in vivo bone marrow metaphase analysis failed to confirm this material as clastogenic. The remaining 17 compounds were classified as negative in the assay. In general the results of the micronucleus test agreed with the results of other genetic toxicology assays on this group of compounds.  相似文献   

14.
Despite the widespread use of diphenylhydantoin (DPH), there is a lack of reliable information on the teratogenic effects, correlation with maternal and developmental toxicity, and dose–response relationship of DPH. This study investigated the dose–response effects of DPH on pregnant dams and embryo‐fetal development as well as the relationship between maternal and developmental toxicity. DPHwas orally administered to pregnant rats from gestational days 6 through 15 at 0, 50, 150, and 300 mg/kg/day. At 300 mg/kg, maternal toxicity including increased clinical signs, suppressed body weight, decreased food intake, and increased weights of adrenal glands, liver, kidneys, and brain were observed in dams. Developmental toxicity, including a decrease in fetal and placental weights, increased incidence of morphological alterations, and a delay in fetal ossification delay also occurred. At 150 mg/kg, maternal toxicity manifested as an increased incidence of clinical signs, reduced body weight gain and food intake, and increased weights of adrenal glands and brain. Only minimal developmental toxicity, including decreased placental weight and an increased incidence of visceral and skeletal variations, was observed. No treatment‐related maternal or developmental effects were observed at 50 mg/kg. These results show that DPH is minimally embryotoxic at a minimal maternotoxic dose (150 mg/kg/day) but is embryotoxic and teratogenic at an overt maternotoxic dose (300 mg/kg/day). Under these experimental conditions, the no‐observed‐adverse‐effect level of DPH for pregnant dams and embryo‐fetal development is considered to be 50 mg/kg/day. These data indicate that DPH is not a selective developmental toxicant in the rat.  相似文献   

15.
16.
D Clive 《Mutation research》1988,205(1-4):313-330
The present analysis examines the assumptions in, the perceptions and predictivity of and the need for short-term tests (STTs) for genotoxicity in light of recent findings that most noncarcinogens from the National Toxicology Program are genotoxic (i.e., positive in one or more in vitro STTs). Reasonable assumptions about the prevalence for carcinogens (1-10% of all chemicals), the sensitivity of these STTs (ca. 90% of all carcinogens are genotoxic) and their estimated "false positive" incidence (60-75%) imply that the majority of chemicals elicit genotoxic responses and, consequently, that most in vitro genotoxins are likely to be noncarcinogenic. Thus, either the usual treatment conditions used in these in vitro STTS are producing a large proportion of artifactual and meaningless positive results or else in vitro mutagenicity is too common a property of chemicals to serve as a useful predictor of carcinogenicity or other human risk. In contrast, the limited data base on in vivo STTs suggests that the current versions of these assays may have low sensitivity which appears unlikely to improve without dropping either their 'short-term' aspect or the rodent carcinogenicity benchmark. It is suggested that in vivo genotoxicity protocols be modified to take into consideration both the fundamentals of toxicology as well as the lessons learned from in vitro genetic toxicology. In the meantime, while in vivo assays are undergoing rigorous validation, genetic toxicology, as currently practiced, should not be a formal aspect of chemical or drug development on the grounds that it is incapable of providing realistic and reliable information on human risk. It is urged that data generated in new, unvalidated in vivo genotoxicity assays be exempted from the normal regulatory reporting requirements in order to encourage industry to participate in the laborious and expensive development of this next phase of genetic toxicology.  相似文献   

17.
In the present study an automated image analysis assisted in vitro micronucleus assay was developed with the rodent cell line CHO-k1 and the human hepatoma cell line HepG2, which are both commonly used in regulatory genotoxicity assays. The HepG2 cell line was chosen because of the presence in these cells of a functionally active p53 protein, a functionally competent DNA-repair system, active enzymes for phase-I and -II metabolism, and an active Nrf2 electrophile responsive system. These properties may result in an assay with a high predictivity for in vivo genotoxicity. The assays with CHO-k1 and HepG2 cells were both evaluated by testing a set of compounds recommended by the European Centre for the Validation of Alternative Methods (ECVAM), among which are in vivo genotoxins and non-genotoxins. The CHO-k1 cell line showed a high sensitivity (percentage of genotoxic compounds that gave a positive result: 80%; 16/20) and specificity (percentage of non-genotoxic compounds that came out negative: 88%; 37/42). Although the sensitivity of the HepG2 cell line was lower (60%; 12/20), the specificity was high (88%; 37/42). These results were confirmed by testing an additional series of 16 genotoxic compounds. For both the CHO-k1 and the HepG2 cell line it was possible to size-classify micronuclei, enabling distinguishing aneugens from clastogens. It is concluded that two high-throughput micronucleus assays were developed that can detect genotoxic potential and allow differentiation between clastogens and aneugens. The performance scores of the CHO-k1 and HepG2 cell lines for in vivo genotoxicity were high. Application of these assays in the early discovery phase of drug development may prove to be a useful strategy to assess genotoxic potential at an early stage.  相似文献   

18.
There is an urgent need for new in vitro methods to predict the potential developmental toxicity of candidate drugs in the early lead identification and optimisation process. This would lead to a reduction in the total number of animals required in full-scale developmental toxicology studies, and would improve the efficiency of drug development. However, suitable in vitro systems permitting robust high-throughput screening for this purpose, for the most part, remain to be designed. An understanding of the mechanisms involved in developmental toxicity may be essential for the validation of in vitro tests. Early response biomarkers - even a single one - could contribute to reducing assay time and facilitating automation. The use of toxicogenomics approaches to study in vitro and in vivo models in parallel may be a powerful tool in defining such mechanisms of action and the molecular targets of toxicity, and also for use in finding possible biomarkers of early response. Using valproic acid as a model substance, the use of DNA microarrays to identify teratogen-responsive genes in cell models is discussed. It is concluded that gene expression in P19 mouse embryocarcinoma cells represents a potentially suitable assay system, which could be readily used in a tiered testing system for developmental toxicity testing.  相似文献   

19.
Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. Birth Defects Research (Part C) 99:14–23, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The effects in the chicken embryo assay of four Alternaria metabolites (alternariol [AOH], alternariol methyl ether [AME], altenuene [ALT], and tenuazonic acid [TA]) were investigated. Administered to 7-day-old chicken embryos by yolk sac injection, AOH, AME, and ALT caused no mortality or teratogenic effect at doses up to 1,000, 500, and 1,000 micrograms per egg, respectively. TA exhibited a calculated 50% lethal dose of 548 micrograms per egg, with no teratogenic effect observed at either lethal or sublethal doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号