首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioactive polysaccharide was synthesized when uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (containing some uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate)) was incubated with a particulate enzyme preparation from Lemna minor. Characterization experiments established that the product: (i) was insoluble in methanol and water, (ii) contained d-[U-14C]apiose (75%) and d-[U-14C]xylose (25%), and (iii) was soluble in 1% ammonium oxalate. The material solubilized by ammonium oxalate (solubilized product): (i) was separated into five fractions by column chromatography with diethylaminoethyl-Sephadex (DEAE-Sephadex), (ii) contained [U-14C]apiobiose side chains that were removed by hydrolysis at pH 4, and (iii) was degraded by fungal pectinase. Both d-[U-14C]apiose residues of the [U-14C]apiobiose side chains were synthesized in vivo since radioactivity was distributed equally between the two residues. The presence of uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) during synthesis of radioactive polysaccharide resulted in: (i) an increase in the incorporation of radioactive d-[U-14C]apiose into solubilized product, (ii) an increase in the ratio of d-[U-14C]apiose to d-[U-14C]xylose present in solubilized product, (iii) an increase in the amount of [U-14C]apiobiose plus d-[U-14C]apiose released from the solubilized product by hydrolysis at pH 4, and (iv) a tighter binding of the solubilized product to DEAE-Sephadex. These results show that apiogalacturonans similar to or the same as those synthesized by the intact plant were synthesized in the particulate enzyme preparation isolated from L. minor. [14C]Apiogalacturonans completely free of d-[U-l4C]xylose were not isolated. The [14C]apiogalacturonan with the least d-[U-14C]xylose still had 4.8% of its radioactivity present in d-[U-14C]xylose. The possibility remains that d-xylose is a normal constituent of the apiogalacturonans of the cell wall of L. minor.  相似文献   

2.
A particulate enzyme preparation capable of catalyzing the transfer of d-[U-14C]apiose and d-[U-14C]xylose from uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (UDP[U-14C]Api) and uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate) (UDP[U-14C]Xyl) to endogenous acceptor molecules was isolated from Lemna minor. The two enzymes were named UDP-d-apiose:acceptor d-apiosyltransferase and UDP-d-xylose:acceptor d-xylosyltransferase and were associated with particulate material sedimenting between 480 and 34,800g. The rate of d-[U-14C]apiose or d-[U-14C]xylose incorporation was proportional to the quantity of enzyme preparation used and was constant with time to 1.5 min. Both enzymes showed a pH optimum of 5.7 in citrate-phosphate buffer. The d-apiosyltransferase has a Km for UDP[U-14C]Api of 4.9 μm. Bovine serum albumin and sucrose stimulated the rate of incorporation of both pentoses. Both enzymes rapidly lost activity; with our best conditions, approximately 50% of each enzyme activity was lost in 6 min at 25 °C or in 3 h at 4 °C. Incorporation of d-[U-14C]apiose was obtained in the absence of added uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) (UDPGalUA); however, the addition of UDPGalUA not only almost doubled the rate of incorporation, but also increased the total incorporation of d-[U-l4C]apiose and extended the proportional range of incorporation at 25 °C from 1.5 to 2 min.  相似文献   

3.
Saito K 《Plant physiology》1978,62(2):215-219
[U-14C]Sucrose, myo-[U-14C]inositol, [6-14C]- and [U-14C]glucuronate, UDP-[U-14C]glucuronate, [U-14C]gluconate, and l-[1-14C]ascorbic acid were fed into grape berries, Vitis labrusca L. cv. Delaware, at intervals throughout the ripening process and incorporation of 14C into several metabolites was studied.  相似文献   

4.
Suspension cultures of Glycine max were incubated for 4, 12 and 24 hr in [U-14C]glycerol in 0.2 M potassium dihydrogen phosphate, in [U-14C  相似文献   

5.
A quantitative triterpene analysis was made of latex stem tissue of Euphorbia lathyris. Young plants seedlings of E. lathyris were incubated with various labelled precursors. Incorporation into triterpenes was obtained from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose, [U-14C]glyoxylate, [2,3-14C]succinic acid, [1-14C]glycerol [U-14C]serine. Both sugars tyrosine appeared to be effective precursors in DOPA synthesis inside the laticifers. Exogenously supplied mevalonic acid was only involved in triterpene synthesis outside the laticifers. GC-RC of triterpenes synthesized from [U-14C]glucose revealed the origin of these compounds in the latex. The labelled triterpenes obtained after incorporation of the other mentioned labelled precursors were only partly synthesized in the laticifers. For quantitative data on latex triterpene synthesis seedlings were incubated with [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose [1-14C]acetate in the presence of increasing amounts of unlabelled substrate. From the amount of 14C incorporated into the triterpenes the amount of substrate directly involved in triterpene synthesis was calculated, as was the absolute triterpene yield. Sucrose showed the highest triterpene yield, equivalent to the daily increase of the triterpene content of growing seedlings. The possible significance of the other precursors in triterpene synthesis in the laticifers is discussed.  相似文献   

6.
Feeding experiments have demonstrated the specific incorporation of radioactivity from dl-phenylalanine-[1-14C], l-phenylalanine-[U-14C], sodium acetate-[2-14C] and l-methionine-[methyl-14C] into the 3-benzylchroman-4-one eucomin in Eucomis bicolor. The labelling patterns indicate that eucomin is biosynthesized by the addition of a carbon atom derived from methionine onto a C15 chalcone-type skeleton. Radioactivity from 2′,4′,4-trihydroxy-6′-methoxychalcone-[methyl-14C] and 2′,4′-dihydroxy-4,6′-dimethoxychalcone-[6′-methyl-14C] was incorporated into eucomin, the latter compound being the better precursor, demonstrating the feasibility that 2′-methoxychalcones are biosynthetic precursors of the “homoisoflavonoids”. Possible biosynthetic relationships in this class of compounds are discussed.  相似文献   

7.
A procedure is described for the isolation from the phototrophic procaryole Anacystis nidulans of [U-14C]-labelled glycogen, with high specific radioactivity,formed when NaH14CO3 was added to non-dividing cells that continued to photoassimilate CO2. [U-14C]-Labelled glycogen was then treated with isoamylase (EC 3.2.1.68), isoamylase plus beta-amylase (EC 3.2.1.2), or glucoamylase (EC 3.2.1.3) to give [U-14C]-labelled maltosaccharides, maltose-U-14C, or d-glucose-U-14C, respectively.  相似文献   

8.
A simple, three-step conversion of 1,2-O-isopropylidene-α-d-glucofuranose into l-ascorbic acid, originally described by Bakke and Theander, was used to prepare l-[4-14C]ascorbic acid from milligram amounts of d-[3-14C]glucopyranose in 28% radioisotopic yield. In addition, l-[6-14C]- and l-[U-14C]-ascorbic acid were prepared from d-[1-14C]- and d-[U-14C]-glucopyranose, respectively. The procedure is useful for the synthesis of l-ascorbic acid bearing isotopic hydrogen, carbon, or oxygen atoms at specific positions, subject only to the availability of starting material.  相似文献   

9.
Addition of either l-[U-14C]threonine or l-[U-14C]isoleucine to 2.7-day-old shaking liquid cultures of Pseudomonas syringae pv. atropurpurea resulted in incorporation of radioactivity into coronatine, but not into N- coronafacoylvaline, another phytotoxin excreted by P.s. atropurpurea. In contrast, addition ofl-[U-14C]valine did not lead to incorporation of radioactivity into coronatine, but instead into coronafacoylvaline. Acid hydrolysis of the purified [14C] coronatine obtained after incorporation of either [14C]isoleucine or [14C]threonine demonstrated that > 94% of the radioactivity was present in the 1-amido-1-carboxy-2-ethylcyclopropyl moiety of coronatine, and < 6 % was in the coronafacoyl moiety. These findings are used to propose a biosynthetic pathway for coronatine.  相似文献   

10.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

11.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

12.
5′-Methylthio[U-14C]adenosine was used as a culture supplement for Candida utilitis. The resulting S-adenosylmethionine was hydrolyzed into its structural components. Virtually none of the label of the pentose was found in the carbohydrate part of the intracellular S-adenosylmethionine. Much of it was present in the four-carbon chain of the methionine part of the sulfonium compound. The U-14C)-labeled adenine of 5′-methylthio[U-14C]adenosine did not contribute to the labeling of the amino acid component of the sulfonium compound.  相似文献   

13.
β-[U-14C]Alanine can be synthesized in >95% yield from l-[U-14C]aspartic acid using the aspartate 1-decarboxylase of Escherichia coli and converted to d-[1,2,3-14C]pantothenate in a 10–20% yield using the pantothenate synthetase of E. coli. Sufficiently pure preparations of both enzymes are readily obtained.  相似文献   

14.
Specific incorporation of l-[U-14C]phenylalanine, [U-14C]cinnamic acid and p[2-14C]coumaric acid into bakuchiol has been observed in Psoralea corylifolia. Our findings show that the aromatic moiety along with two carbon atoms of the side chain are biosynthetically derived via phenylpropane pathway and not by the alternate pathway proposed earlier.  相似文献   

15.
The ester of N-benzoylphenylalanine and N-benzoylphenylalaninol, asperphenamate, was isolated from solid cultures of Penicillium brevicompactum. Isotope from l-[U-14C] phenylalanine was well incorporated into both benzoyl groups and into the phenylalanine and phenylalaninol moieties. Isotope from [U-14C]benzoic acid was also well incorporated into asperphenamate.  相似文献   

16.
《Insect Biochemistry》1990,20(6):645-652
Post-emergence levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and ketocatechol were determined in cuticle from adult Tenebrio molitor. Possible pathways for biosynthesis of DOPAC were studied by comparing the incorporation of injected [U-14C]tyrosine, [7-14C]dopamine, [7-14C]DOPA, [7-14C]tyramine, [U-14C]p-hydroxyphenylpyruvic acid (p-HPPA) and [ring-3H]p-hydroxyphenylacetic acid (p-HPAA) into cuticular DOPAC during its period of maximal increase 1–3 days after adult emergence. Increased incorporation of [U-14C]tyrosine between days 0 and 3 suggests rapid de novo biosynthesis of DOPAC from this primary precursor. Of the putative intermediates tested, only p-HPPA had a pattern of incorporation similar to that seen with tyrosine. Since p-HPAA was poorly incorporated into both cuticle and DOPAC, a tentative pathway tyrosine → p-HPPA → 3,4-dihydroxyphenylpyruvic acid → DOPAC is proposed.  相似文献   

17.
DL-Phenylalanine-[3-14C] and cinnamic acid-[3-14C] were fed to this plant and the label from cinnamic acid was incorporated into gallic acid, phyllodulcin and quercetin. By feeding p- coumaric acid-[U-3H], caffeic acid-[U-3H] and hydrangea glucoside A-[U-3H], it was possible to show that hydroxylation at C-3′in phyllodulcin occurs after the ring closure of dihydroisocoumarin. The biosynthetic pathway of phyllodulcin in this plant is thus: phenylalanine → cinnamic acid → p- coumaric acid → hydrangenol → phyllodulcin.  相似文献   

18.
Partial degradations of (+)-isothujone biosynthesised in Tanacetum vulgare after feeding IPP-[4-14C], DMAPP-[4-14C] or 3,3-dimethylacrylate-[Me-14C], and of geraniol and (+)-pulegone formed in Pelargonium graveolens and Mentha pulegium respectively after uptake of 3,3-dimethylacrylate-[Me-14C], indicated that none of these metabolites was a direct source of the part of the monoterpene skeleton derived hypothetically from DMAPP. Uptake of glucose-[U14C] into P. graveolens led, in contrast, to both IPP and DMAPP-derived moieties of geraniol being extensively labelled. Feeding of l-valine-[U-14C] and l-leucine-[U-14C] to all three plants resulted in negligible incorporation of tracer into monoterpenes. A soluble enzyme system prepared from foliage of T. vulgare that had been exposed to CO2-[14C] for 20 days converted isotopically-normal IPP into GPP with the DMAPP-derived portion containing essentially all (>98%) of the radioactivity present. These observations and those previously obtained from feeding experiments with other [14C]-labelled precursors on the same plant species are consistent with the occurrence of two metabolic pools of intermediates for monoterpene biosynthesis, one of which is probably protein-bonded.  相似文献   

19.
Pretreatment of discs excised from developing tubers of potato (Solanum tuberosum L.) with 10 millimolar sodium fluoride induced a transient increase in 3-phosphoglycerate content. This was followed by increases in triose-phosphate, fructose 1,6-bisphosphate and hexose-phosphate (glucose 6-phosphate + fructose 6-phosphate + glucose 1-phosphate). The effect of fluoride is attributed to an inhibition of glycolysis and a stimulation of triose-phosphate recycling (the latter confirmed by the pattern of 13C-labeling [NMR] in sucrose when tissue was supplied with [2-13C]glucose). Fluoride inhibited the incorporation of [U-14C] glucose, [U-14C]sucrose, [U-14C]glucose 1-phosphate, and [U-14C] glycerol into starch. The incorporation of [U-14C]ADPglucose was unaffected. Inhibition of starch biosynthesis was accompanied by an almost proportional increase in the incorporation of 14C into sucrose. The inhibition of starch synthesis was accompanied by a 10-fold increase in tissue pyrophosphate (PPi) content. Although the subcellular localization of PPi was not determined, a hypothesis is presented that argues that the PPi accumulates in the amyloplast due to inhibition of alkaline inorganic pyrophosphatase by fluoride ions.  相似文献   

20.
The incorporation of l-[U-14C]lysine and l-[U-14C]phenylalanine into piperlongumine has been demonstrated in Piper longum. The subsequent stepwise degradation to methyl-(3,4,5-trimethoxyphenyl)-propanoate and δ-aminovaleric acid revealed that the C6-C3 moiety of the alkamide arises from phenylalanine; the heterocyclic ring is biosynthesised from lysine. It has also been shown that dl-[2-14C]tyrosine and [2-14C]sodium acetate are poor precursors of piperlongumine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号