首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The homogenate and chloroplast fractions isolated from the leaves of 10–14-day-old kidney-bean (Phaseolus vulgaris L.) seedlings were incubated with 14C-L-phenylalanine for 30 min in the light, and the incorporation of radioactivity into phenolic compounds was determined. Label incorporation into phenolic compounds of the homogenate and chloroplast fractions amounted to 15–17 and 4–5% of the introduced radioactivity, respectively. The chloroplasts were about an order of magnitude higher than the homogenate in the specific radioactivity of phenolic compounds. Chloroplasts contained four flavonol glycosides (kaempferol and quercetin aglycones), which were the major components of soluble phenolic compounds of leaves. It was concluded that kidney-bean leaf chloroplasts were capable of performing phenolic compound biosynthesis.  相似文献   

2.
The presence of a nonspecific acid phosphatase which had high activity with 3-phosphoglycerate as substrate has recently been reported in Spinacia oleracea L. chloroplasts (Mulligan, Tolbert 1980 Plant Physiol 66: 1169-1173). The subcellular localization of this activity has been reinvestigated by differential centrifugation of spinach leaf homogenates. The fraction sedimenting at 1,200g comprised mostly intact chloroplasts and contained more than half the chlorophyll but only 5% of the 3-phosphoglycerate phosphatase activity present in the homogenate. The fraction of the homogenate pelleting at 5,000g contained broken chloroplasts and had considerable 3-phosphoglycerate phosphatase activity. Further purification of the 1,200g pellet fraction on a Percoll step gradient yielded greater than 95% intact chloroplasts, yet the phosphatase activity was reduced more than 15-fold on a chlorophyll basis by this purification.

When the intact chloroplast and cytoplasmic fractions of mesophyll protoplasts were separated by silicone oil filtering centrifugation, the chloroplast fraction contained more than 90% of the chlorophyll but had less than 12% of the 3-phosphoglycerate phosphatase activity. By contrast, more than 60% of the 2-phosphoglycolate phosphatase was recovered in this chloroplast fraction supporting previous evidence that this phosphatase is localized in the chloroplast stroma.

It is concluded that 3-phosphoglycerate phosphatase activity is not localized in the chloroplast but that the activity present in chloroplast preparations results from contamination by acid phosphatase, which either binds to the thylakoid membranes during preparation or is present as some other contaminant in the preparation. Inasmuch as the enzyme acts on a broad range of substrates its presence in chloroplast preparations, particularly when the percentage of intact chloroplasts is low, could produce artifacts in metabolic studies such as measurement of phosphorylation.

  相似文献   

3.
Seedlings of red cabbage, Brassica oleracea cv Red Danish, germinated in the dark, rapidly produced anthocyanins upon illumination. The anthocyanin production increased up to six days of illumination time. The activity of phenylalanine ammonia-lyase increased rapidly in illuminated seedlings to a maximum at 8 hr and declined thereafter to dark levels. During this period the activity of flavanone synthase, the first enzyme responsible for the establishment of C15 flavonoid skeleton, paralleled that of the anthocyanin concentration. The crude flavanone synthase has a pH optimum at around 8, a molecular weight of ca 120 000, and is able to utilize only p-coumaryl-CoA as co-substrate for the production of flavonoids.  相似文献   

4.
Ochromonas danica cell homogenate can be fractionated by differential centrifugation into chloroplast, mitochondrial, ribosome, lysosomal, plasma membrane and soluble fractions. The plasma membrane fraction was further purified by discontinuous sucrose density gradient centrifugation and was found to be enriched 4–16-fold in the following enzymes: β-galactosidase, acid phosphatase, alkaline phosphatase, 5′-nucleotidase, and (Na+, K+)-ATPase. The role of plasma membrane phosphatase in the phosphate metabolism of plants is discussed.  相似文献   

5.
The impact of weak permanent magnetic field (PMF) with magnetic flux density of 185–650 μT on activities of antioxidant enzymes in 5-day-old radish (Raphanus sativus L. var. radicula D.C.) seedlings, cv, Rosovo-krasnyi s belym konchikom was demonstrated. In the range of 185–325 μT PMF suppressed superoxide dismutase (SOD) activity in seedling grown in darkness and catalase (CAT) grown in both darkness and light. At the same values of magnetic flux density, all fractions of guaiacol peroxidase were activated and MDA accumulation was enhanced. At the higher values of magnetic flux density, SOD was activated in seedlings grown in darkness and CAT was activated in seedlings grown in both darkness and light. Other indices decreased or remained unchanged. It was concluded that PMF action depends on its intensity: at its low values, antioxidant enzymes are inhibited and at high values — activated.  相似文献   

6.
The localization of enzymes involved in the flow of carbon into and out of starch was determined in guard cells of Commelina communis. The guard cell chloroplasts were separated from the rest of the cellular components by a modification of published microfuge methods. The enzymes of interest were then assayed in the supernatant and chloroplast fractions. The chloroplast yield averaged 75% with 10% cytoplasmic contamination. The enzymes involved in starch biosynthesis, ADPglucose pyrophosphorylase, starch synthase, and branching enzyme, are located exclusively in the chloroplast fraction. The enzymes involved in starch degradation show a more complex distribution. Phosphorylase is located in both the supernatant and chloroplast fraction, 50% in each fraction. Most of the amylase and debranching enzyme activity is present in the supernatant (70%) fraction. The majority of the rest of the enzymes involved in the degradation of starch to malate and synthesis of starch from a hexose precursor were also investigated. All of the enzymes were present in the chloroplast except for hexokinase and phosphofructokinase. The inability to assay these enzymes could possibly have been due to the lack of or low activity of the enzymes or to nonoptimal assay conditions.  相似文献   

7.
About 68–86% of the cysteine synthase activity in leaf tissue of white clover (Trifolium repens) and peas (Pisum sativum cultivar Massey Gem) was associated with chloroplasts. The enzymes from white clover and peas were purified ca 66 and 12-fold respectively. For clover, the Km values determined by calorimetric and S2? ion electrode methods were: S2? 0.51 and 0.13 mM; O-acetylserine (OAS), 3.5 and 2.O mM respectively. The analogous values for the pea enzyme were: S2?, 0.24 and 0.06 mM; OAS, 3.1 and 0.24 mM. Both enzymes were inhibited by cystathionine and cysteine. Pretreatment with cysteine inactivated the enzyme, but addition of pyridoxal phosphate caused partial reactivation. Isolated pea chloroplasts (70–75 % intact) catalysed OAS-dependent assimilation of sulphide at a mean rate of 88 μmol/mg Chl/hr. About 85 % of the OAS-dependent sulphide assimilated was recovered as cysteine. The rates were unaffected by light and 2 μM DCMU. Sonicating the chloroplasts enhanced the rate by 1.3–2 fold. Cysteine synthase activity was associated with the chloroplast stroma. Similar results were obtained for clover chloroplasts except that both the intactness and the rates were lower.  相似文献   

8.
Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L   总被引:8,自引:8,他引:0       下载免费PDF全文
Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate.  相似文献   

9.
In various cellular subfractions of Calendula officinalis leaves a study was made of the distribution of polyprenyl quinones and α-tocopherol and the dynamics of their labelling with 14CO2 and acetate-[1-14C] and incorporation of mevalonate-[2-14C] after 3 hr. It was confirmed that plastoquinone occurs only in the chloroplasts, ubiquinone only in the mitochondria and α-tocopherol in both these subfractions. Phylloquinone was found in the chloroplast and mitochondrial fractions as well as in the post-mitochondrial supernatant. Studies of the dynamics of radioactive precursor incorporation indicated that α-tocopherol is metabolized more rapidly than the polyprenyl quinones studied; the incorporation of mevalonate-[2-14C] suggests that the side chain of plastoquinone can be synthesized in the cytoplasm and transported to the chloroplasts.  相似文献   

10.
The first leaves (40 millimeters long) of 4-day-old light-grown Avena sativa L. cv Victory I seedlings contained a complete age sequence of cells from the base to the tip, and within these tissues all stages of chloroplast development could be observed. Although chloroplasts underwent progressive development, a marked increase in number of thylakoids per granum, in chloroplast volume, and in chlorophyll content occurred in the region between 20 and 30 millimeters from the base. Photosynthetic CO2 fixation (per unit chlorophyll) increased markedly during chloroplast development and closely followed structural changes in chloroplasts. It was also found that the partitioning of photosynthates differed greatly in the segment from 30 to 40 millimeters (at the tip of the leaf) compared with the segment nearer to the leaf base, although both total 14CO2 fixation and chlorophyll content per segment did not change significantly along the length of the leaves. As the thylakoid system reached full maturation, partitioning of photosynthates into sucrose increased but partitioning decreased into starch, lipids, and phosphorylated intermediates.  相似文献   

11.
Leaves of a novel strain of peas (Pisum sativum L.) were used to determine the distribution of secondary metabolites and their biosynthetic enzymes. Leaf epidermal layers in this strain are easily separated from the parenchyma. Anthocyanins and flavonol glycosides were localized in epidermal vacuoles only. Among the biosynthetic enzymes studied, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), S-adenosyl-1-methionine (SAM):caffeic acid and SAM:quercetin methyltransferases (o-dihydric phenol methyltransferase, EC 2.1.1.42) and a flavonoid 7-O-glucosyltransferase (EC 2.4.1.91) were chiefly localized in the parenchyma, whereas trans-cinnamate 4-monooxygenase (EC 1.14.13.11), hydroxycinnamate:CoA ligases (EC 6.2.1.12) and a flavonoid 3-O-glucosyltransferase (EC 2.4.1.91) were found mainly in the epidermis. Flavanone (chalcone) synthase activity was found only in the epidermis, whereas chalcone isomerase (EC 5.5.1.6) was evenly distributed in epidermal and parenchyma tissues.  相似文献   

12.
The intracellular localization of several aspartate pathway enzymes has been studied in pea (Pisum sativum cv Feltham First) and barley (Hordeum vulgare cv Julia) leaves. Protoplast lysates were fractionated by differential or sucrose density gradient centrifugation, in media optimized for each enzyme. The results show that aspartate kinase, homoserine kinase, threonine synthase, and cystathionine γ-synthase are confined to the chloroplast. Cystathionine β-lyase appears to be present in several fractions, though more than 50% of the total activity is associated with the chloroplasts. In contrast, neither methionine synthase nor methionine adenosyl-transferase were significantly associated with chloroplasts, and only a small proportion of the methionine synthase was associated with the mitochondrial fraction. Methionine adenosyltransferase, and hence S-adenosylmethionine synthesis, is not found in any organelle fraction. The conclusion is that whereas threonine, like lysine, is synthesized only in the chloroplast, the last step in methionine biosynthesis occurs largely in the cytoplasm.  相似文献   

13.
Three levels of free amines and the activities of their biosynthetic enzymes were measured in subcellular fractions of two cell lines of Nicotiana tabacum L. cv Xanthi. The TX4 cell line, a p-fluorophenylalanine resistant culture which accumulates high levels of cinnamoylamides, was compared to the wild-type culture TX1. In cells harvested on day 6 of the growth cycle, nearly all free putrescine, spermidine, and tyramine was found in the supernatant fraction of both cell lines. Although a consistent portion of ornithine decarboxylase activity was detected in the nuclear-enriched fractions of TX1 and TX4, the largest levels of activity were in the supernatants of both lines. In TX1, arginine decarboxylase activity was low relative to that of ornithine decarboxylase, but, in the TX4 line arginine decarboxylase levels in the cytosol were substantially elevated. Tyrosine decarboxylase was not detected in 6-day-old TX1 cells, but significant amounts of activity were measured in the 1000g and supernatant fractions of TX4. S-Adenosylmethionine decarboxylase activity was low in both cell lines and was located predominantly in the supernatant.  相似文献   

14.
Changes in activities of photosynthetic enzymes and photochemical processes were followed with aging of vegetative and flag leaves of wheat (Triticum aestivum L. cv Roy). Activities of stromal enzymes began to decline prior to photochemical activities. In general, total soluble protein and the activities of ribulose-1,5-bisphosphate carboxylase and NADP-triose-phosphate dehydrogenase declined in parallel and at an earlier age than leaf chlorophyll (Chl), leaf photosynthesis, and photosynthetic electron transport activity. Leaves appeared to lose whole chloroplasts as opposed to a general degradation of all chloroplasts based on three lines of evidence: (a) electron transport activity calculated on an area basis declined much earlier than the same data expressed on a Chl basis; (b) Chl content per chloroplast was similar for mature and senescent tissue; and (c) the absorbance at 550 nanometers (light scattering) per unit of Chl remained essentially constant until the end of senescence. Chloroplasts did, however, undergo some modifications before they were lost (e.g. loss of stromal enzyme activities), but the reduction in leaf photosynthesis was apparently caused by a loss of whole chloroplasts.  相似文献   

15.
Postnuclei supernatant of soybean (Glycine max cv. Chippewa 64) nodule homogenate was fractionated by stepwise sucrose density gradient centrifugation into supernatant, endoplasmic reticulum and mitochondria, and three distinct bands with 1.22, 1.25, and 1.27 g/cm3 of peak density. Based on their enzymic activities, composition of electron transport components, and ultrastructural characteristics, the lightest band appears to be the mature bacteroids; the intermediate band the transforming bacteria; and the heaviest, the bacteria. The isolation procedure separates nodule symbionts into different functional and developmental fractions, and it may be a valuable tool for studies involving development, regulation, and senescence of bacteroids in the nodule.  相似文献   

16.
Primary leaf segments from 8-day-old dark-grown, and from 4- and 8-day-old light-grown seedlings of Zea mays L. cv. Fronica, were treated with 10-bM benzyladenine (BA) in the dark for 14 h. The segments were then studied after an exposure to light for 14 h. Photosynthetic activity (O2 evolution and CO2 fixation) and chlorophyll accumulation were stimulated by BA in dark-grown leaf segments with etioplastids in the earliest stage of development. In these segments BA stimulated the activities of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), phosphoenolpyruvate carboxylase (EC 4.1.1.31), NADP+-malic enzyme (EC 1.1.1.40) and pyruvate, orthophosphate dikinase (EC 2.7.9.1). In segments taken from 4- and 8-day light-grown seedlings, BA did not enhance the photosynthetic activity nor the chlorophyll accumulation. The activity of the enzymes mentioned above, was significantly enhanced by the BA-treatment. BA mainly affected grana stacking in mesophyll cell chloroplasts in primary leaf segments taken from 3- to 5-day light-grown seedlings. Stroma thylakoid development was stimulated only in leaf segments from 3-day-old plants. At the same time BA accelerated grana loss in chloroplasts of bundle sheath cells, a typical phenomenon of development in such chloroplasts. Stroma thylakoid length in these chloroplasts increased by a BA treatment in segments from 3- and 4-day light-grown plants. A significantly higher number of chloroplasts was only observed with segments taken from 8-day light-grown seedlings and treated with BA. The etiochloroplast number in segments taken from 8-day etiolated plants was significantly higher in BA-treated segments after 26 h illumination. In etiochloroplasts from both mesophyll and bundle sheath cells, BA enhanced grana stacking after illumination for 4 h or more, whereas stroma membrane length was significantly higher only after 26 h light. It is concluded that the effects of BA depend on the developmental stage. BA accelerates the development of mesophyll and bundle sheath cell (etio)chloroplasts, but does not affect the ultrastructure of mature chloroplasts.  相似文献   

17.
The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed.  相似文献   

18.
Membrane-bound ATPase activities in chloroplasts of Euglena were examined. Ca2+- and Mg2+-dependent activities were relatively high in membrane preparations and could not be further activated by a number of procedures. The enzyme was found to be highly specific for purine nucleotides and was inhibited by the usual inhibitors of photophosphorylation. Km values of Ca2+ and Mg2+ ATPase for ATP were 2.5 and 2.1 mM, respectively. Both activities were competitively inhibited by ADP and inorganic phosphate. A relationship was found between Ca2+- or Mg2+-dependent ATPase activities and chloroplast completeness. The possibilities that these activities result from one enzyme depending on Ca2+ or Mg2+ or from two different enzymes are discussed.  相似文献   

19.
The three enzymes D-3-phosphogIycerate dehydrogenase (E.C. 1.1.l.s), eqglutamate dependent O-phospho-L-serine aminotransferase (E.C. 2.6.1.52), and O-phospho-L-serine phosphatase (E.C. 3.1.3.3.), which together catalyse the turnover of D-3-phos-phoglycerate (3-PGA) to serine were assayed in chloroplast and leaf extracts from spinach (Spinacia oleracea). Relatively high activities of the dehydrogenase and the phosphatase were found in both chloroplast and leaf extracts, whereas the specific activity of the aminotransferase was 10 times higher in leaf extracts than in chloroplast extracts. The results suggest that spinach chloroplasts are able to produce minor amounts of serine directly from 3-PGA, but that the main part of the phosphohydroxypyruvate formed is exported, and probably used in a parallel pathway to serine outside the chloroplasts. Some kinetic properties of the enzymes were also determined.  相似文献   

20.
In 3- and 14-day-old seedlings and in the leaves of Calendula officinalis the following sterols were identified: cholestanol, campestanol, stigmastanol, cholest-7-en-3-β-ol, 24-methylcholest-7-en-3β-ol, stigmast-7-en-3β-ol, cholesterol, campesterol, sitosterol, 24-methylcholesta-5,22-dien-3β-ol, 24-methylenecholesterol, stigmasterol and clerosterol. Sitosterol was predominant in young and stigmasterol in old tissues. Young tissues contained relatively more campesterol but in old tissues a C28Δ5,22 diene was present suggesting transformation of campesterol to its Δ5,22 analog, similar to that of sitosterol to stigmasterol. All the identified sterols were present as free compounds and also in the steryl esters, glucosides, acylated glucosides and water-soluble complexes. The variations in the amounts of these fractions in the embryo axes and cotyledons of 3- and 14-day-old seedlings and the distribution of individual sterols among the fractions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号