首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven flavonol glycosides and two anthocyanins, only one of which was previously identified, were isolated from the flower petals of okra, Hibiscus esculentus L. On the basis of chromatographic, spectral, and degradative evidence, the following structural assignments were made: quercetin 4′-glucoside, quercetin 7-glucoside, quercetin 5-glucoside, quercetin 3-diglucoside, quercetin 4′-diglucoside, quercetin 3-triglucoside, quercetin 5-rhamnoglucoside, gossypetin 8-glucoside, gossypetin 8-rhamnoglucoside, gossypetin 3-glucosido-8-rhamnoglucoside, cyanidin 4′-glucoside, and cyanidin 3-glucosido-4′ glucoside. Some evidence was obtained of a pentahy-droxy, monomethoxy-flavone glycoside. The total flavonoid content in the red portion of the petal was 0.48% of fresh weight; that in the white portion was 2.51%. The two anthocyanins comprised 28.5% of the flavonoid content of the red flower but only a trace of the content of the white.  相似文献   

2.
The effect of the nature of the sugar moiety on quercetin absorption has been investigated in rats. Four groups of rats received an experimental meal containing 20 mg of quercetin equivalents, supplied as quercetin, quercetin 3-O-β-glucoside, quercetin 3-O-β-rhamnoside or rutin. Four hours after the meal, the metabolites identified in hydrolysed plasma were identical in all groups (3′- and 4′-methylquercetin). However, the total concentration of metabolites was markedly different: 11.2±1.8, 2.5±2.0 and 33.2±3.5 μM for the quercetin, rutin, and quercetin 3-glucoside meals respectively. After quercetin 3-rhamnoside consumption, we failed to detect any metabolites in the plasma. These data suggest that the 3-O-glucosylation improves the absorption of quercetin in the small intestine, whereas the binding of a rhamnose to the aglycone markedly depresses it. Additional experiments have shown that the higher plasma levels measured after quercetin 3-glucoside meal compared to the quercetin meal were maintained throughout the 24-hour period following the meal. Using a multi-electrode coulometric detection, together with suitable chromatographic conditions, we were able to distinguish between the conjugated and the glycosylated forms. Thus, we clearly showed the absence of quercetin 3-O-β-glucoside in the plasma from rats fed a diet containing this glucoside. This result suggests that quercetin 3-O-β-glucoside is hydrolysed before or during its intestinal absorption.  相似文献   

3.
The effect of the nature of the sugar moiety on quercetin absorption has been investigated in rats. Four groups of rats received an experimental meal containing 20 mg of quercetin equivalents, supplied as quercetin, quercetin 3-O-β-glucoside, quercetin 3-O-β-rhamnoside or rutin. Four hours after the meal, the metabolites identified in hydrolysed plasma were identical in all groups (3'- and 4'-methylquercetin). However, the total concentration of metabolites was markedly different: 11.2±1.8, 2.5±2.0 and 33.2±3.5 μM for the quercetin, rutin, and quercetin 3-glucoside meals respectively. After quercetin 3-rhamnoside consumption, we failed to detect any metabolites in the plasma. These data suggest that the 3-O-glucosylation improves the absorption of quercetin in the small intestine, whereas the binding of a rhamnose to the aglycone markedly depresses it. Additional experiments have shown that the higher plasma levels measured after quercetin 3-glucoside meal compared to the quercetin meal were maintained throughout the 24-hour period following the meal. Using a multi-electrode coulometric detection, together with suitable chromatographic conditions, we were able to distinguish between the conjugated and the glycosylated forms. Thus, we clearly showed the absence of quercetin 3-O-β-glucoside in the plasma from rats fed a diet containing this glucoside. This result suggests that quercetin 3-O-β-glucoside is hydrolysed before or during its intestinal absorption.  相似文献   

4.
The flavonol glycosides characterized from the branches of Carya pecan include three new compounds, azaleatin 3-glucoside azaleatin 3-diglycoside and caryatin 3′- (or 4′-) rhamnoglucoside. together with azaleatin 3-rhamnoside. In the leaf tissue, quercetin 3-glucoside, quercetin 3-galactoside, quercetin 3-rhamnoside, quercetin 3-arabinoside and a small amount of kaempferol 3-monomethyl ether were identified.  相似文献   

5.
A new flavonol glycoside, gossypetin 8-O-rhamnoside, was isolated from flower petals of Gossypium arboreum along with quercetin 7-O-glucoside, quercetin 3-O-glucoside and quercetin 3′-O-glucoside. These compounds showed antibacterial activity against Pseudomonas maltophilia and Enterobacter cloacae.  相似文献   

6.
Leaf flavonoid glycosides of Eucalyptus camaldulensis were identified as kaempferol 3-glucoside and 3-glucuronide; quercetin 3-glucoside, 3-glucuronide, 3-rhamnoside, 3-rutinoside and 7-glucoside, apigenin 7-glucuronide and luteolin 7-glucoside and 7-glucuronide. Two chemical races were observed based on the flavonoid glycosides. These races correspond to the northern and southern populations of species growing in Australia. The Middle Eastern species examined were found to belong to the southern Australian chemical race. The major glycosides of E. occidentalis proved to be quercetin and myricetin 3-glucuronide.  相似文献   

7.
The aim of this study was to quantify the contents of individual quercetin glycosides in red, yellow and chartreuse onion by High Performance Liquid Chromatography (HPLC) analysis. Acid hydrolysis of individual quercetin glycosides using 6 M hydrochloric acid guided to identify and separate quercetin 7,4′-diglucoside, quercetin 3-glucoside, quercetin 4′-glucoside, and quercetin. The contents of total quercetin glycosides varied extensively among three varieties (ranged from 16.10 to 103.93 mg/g DW). Quercetin was the predominant compound that accounted mean 32.21 mg/g DW in red onion (43.6% of the total) and 127.92 mg/g DW in chartreuse onion (78.3% of the total) followed by quercetin 3-glucoside (28.83 and 24.16 mg/g DW) respectively. Quercetin 3-glucoside levels were much higher in yellow onion (43.85 mg/g DW) followed by quercetin 30.08 mg/g DW. Quercetin 4′-glucoside documented the lowest amount that documented mean 2.4% of the total glycosides. The varied contents of glycosides present in the different onion varieties were significant.  相似文献   

8.
Flavonoid glycosides are common dietary components which may have health-promoting activities. The metabolism of these compounds is thought to influence their bioactivity and uptake from the small intestine. It has been suggested that the enzyme cytosolic beta-glucosidase could deglycosylate certain flavonoid glycosides. To test this hypothesis, the enzyme was purified to homogeneity from pig liver for the first time. It was found to have a molecular weight (55 kDa) and specific activity (with p-nitrophenol glucoside) consistent with other mammalian cytosolic beta-glucosidases. The pure enzyme was indeed found to deglycosylate various flavonoid glycosides. Genistein 7-glucoside, daidzein 7-glucoside, apigenin 7-glucoside and naringenin 7-glucoside all acted as substrates, but we were unable to detect activity with naringenin 7-rhamnoglucoside. Quercetin 4'-glucoside was a substrate, but neither quercetin 3, 4'-diglucoside, quercetin 3-glucoside nor quercetin 3-rhamnoglucoside were deglycosylated. Estimates of K(m) ranged from 25 to 90 microM while those for V(max) were about 10% of that found with the standard artificial substrate p-nitrophenol glucoside. The non-substrate quercetin 3-glucoside was found to partially inhibit deglycosylation of quercetin 4'-glucoside, but it had no effect upon activity with p-nitrophenol glucoside. This study confirms that mammalian cytosolic beta-glucosidase can deglycosylate some, but not all, common dietary flavonoid glycosides. This enzyme may, therefore, be important in the metabolism of these compounds.  相似文献   

9.
Eight flavonoids were isolated from the leaves of Salix alba. One, apigenin 7-O-(4-p-coumarylglucoside), is a new natural compound; another, terniflorin, the 6-isomer, is an artefact. The others are quercetin 3-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-rutinoside and quercetin 7,′3-dimethylether 3-O-glucoside.  相似文献   

10.
《Phytochemistry》1986,25(6):1309-1313
Flavonoid pigments have been identified in the swallowtail butterfly Eurytides marcellus and its larval foodplant Asimina triloba (Annonaceae). Although quercetin 3-glycoside, quercetin 3-rutinoside and quercetin 3-rutinoside-7-glucoside are present in the plant, only quercetin 3-glucoside is sequestered by the insect. Flavonoids have also been found in 10 out of 27 other papilionid species examined. These were mainly 3- and 7-glycosides of the flavonols quercetin and kaempferol. The sequestration of flavonoids by papilionid butterflies appears to be related both to the phylogeny of the Papilionidae and to the choice of larval foodplants by the various phylogenetic groups.  相似文献   

11.
Four new flavonol gycosides: kaempferide 3-O-beta-xylosyl (1-->2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4'-di-O-beta-galactoside, kaempferol 3,7,4'-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1-->6)] [beta-glucosyl (1-->2)]-beta-glucoside-7-O-alpha-rhamnoside, were characterized from a methanolic leaf extract of Warburgia ugandensis. The known flavonols: kaempferol, kaempferol 3-rhamnoside, kaempferol 3-rutinoside, myricetin, quercetin 3-rhamnoside, kaempferol 3-arabinoside, quercetin 3-glucoside, quercetin, kaempferol 3-rhamnoside-4'-galactoside, myricetin 3-galactoside and kaempferol 3-glucoside were also isolated. Structures were established by spectroscopic and chemical methods and by comparison with authentic samples.  相似文献   

12.
A study of flavonoids occurring within a heterocyanic population of Trillium sessile was made to determine the chemical basis of a common floral color polymorphism in this species. In the study population, three floral color phenotypes (red, pink, yellow) are determined primarily by the presence or absence of anthocyanin compounds in the petal tissue, and secondarily by quantitative differences in the concentration of several flavonol glycosides. Petals of red phenotypes contain both cyanidin 3-arabinoside and 3-diarabinoside, petals of pink phenotypes contain only cyanidin 3-arabinoside, and petals of yellow phenotypes lack cyanidin entirely. Quercetin 3-0-glucoside, quercetin 3-0-arabinoglucoside, quercetin 3–0-arabinogalactoside, and quercetin 3-0-arabinogalactosyl, 7-0-glucoside occur in petals of all three phenotypes but differ in relative amounts. Petals of the red phenotype have mostly 3-0-biosides, but lesser amounts of both quercetin 3-0-glucoside and the 3,7-0-triglycoside. Petals of the pink phenotype contain relatively equal amounts of quercetin mono-, di-, and triglycosides. Petals of the yellow phenotypes contain mostly quercetin 3,7-0-triglycosides, and less mono- and di-glycosides. Small amounts of a quercetin tetraglycoside were detected in petals of both yellow and pink phenotypes, but not in red phenotypes. The enhancement of quercetin polyglycoside biosynthesis in yellow petal phenotypes is attributed to the shunting of dihydroflavonol precursors to synthesis of quercetin compounds when their conversion to anthocyanins is blocked genetically.  相似文献   

13.
Mayaca is an aquatic monocot of the monogeneric family Mayacaceae. The flavonol glycosides quercetin 3-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-glucoside, and the flavone luteolin 5-O-glucoside were found in methanolic leaf extracts. The presence of flavonol and flavone O-glycosides sets the Mayacaceae apart from the Commelinaceae, which accumulates predominantly flavone C-glycosides.  相似文献   

14.
The terpenoid and flavonoid constituents of the hitherto unexamined medicinal plant Bridelia ferruginea are reported. Quercetin, quercetin 3-glucoside, rutin, myricetin 3-glucoside and myricetin 3-rhamnoside were identified.  相似文献   

15.
A large number of flavonoids, mostly O-glycosides, are found in foods of plant origin. The bound sugar moiety is known to influence their bioavailability. We examined here the effect of the nature of the sugar on the absorption of the glycosides. Four groups of rats (n = 6) received a meal containing 20 mg of quercetin equivalents supplied as aglycone, quercetin 3-glucoside, quercetin 3-rhamnoside or rutin. Plasma were hydrolysed by a beta-glucuronidase/sulfatase and analyzed by HPLC coupled to UV detection at 370 nm. Four hours after the beginning of the meal, the quercetin metabolites present in plasma were identical in all groups but their total concentrations were quite different. With pure quercetin the circulating levels were 1.7 +/- 1.8 microM, but this level was three fold higher when quercetin was supplied as quercetin 3-glucoside (33.2 +/- 3.5 microM). By contrast, the plasma concentrations of quercetin metabolites was quite low with the rutin meal (about 3 microM) and undetectable after the quercetin 3-rhamnoside meal. These data suggest that the 3-O-glucosylation improves the absorption of quercetin in the small intestine, whereas the binding of a rhamnose or of a glucose-rhamnose moiety to the aglycone markedly depressed its absorption. Additionnal experiments have shown that the higher plasma levels measured after the meal containing quercetin 3-glucoside compared to quercetin were maintained throughout a 24 hour period following the meal. In conclusion, the nature of the glycosylation markedly influences the efficiency of quercetin absorption in rats. Quercetin 3-glucose can be absorbed in the small intestine and is better absorbed than quercetin itself. By contrast, glycosides containing a rhamnose moiety could not be absorbed in the small intestine.  相似文献   

16.
Three quercetagetin methyl ethers, quercetin 3-glucoside, quercetin 3-glucuronide and a sulphated flavonoid were identified in leaves and flowers of Pulicaria arabica.  相似文献   

17.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

18.
Six new and nine known flavonoids were obtained from Neurolaena oaxacana. The known flavonoids are 6-hydroxykaempferol 3,7-dimethyl ether, quercetagetin 3,7-dimethyl ether, quercetin 3-methyl ether, axillarin, nodifloretin, 6-hydroxyluteolin 7-glucoside, kaempferol 3-glucoside, quercetagetin 7-glucoside and patulitrin. The new compounds are 6-hydroxykaempferol 3-methyl ether, quercetagetin 3,7-dimethyl ether 6-galactoside, quercetagetin 3-methyl ether 7-glucoside, the 6- and 7-glucosides of 6-hydroxykaempferol 3-methyl ether and quercetagetin 3-methyl ether 7-sulfate.  相似文献   

19.
Three acylated flavonol diglucosides, kaempferol 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; quercetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; isorhamnetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside were isolated from the whole plant aqueous alcohol extract of Lotus polyphyllos. The known 3,7-di-O-glucosides of the aglycones kaempferol, quercetin and isorhamnetin were also characterized. All structures were established on the basis of chemical and spectral evidence.  相似文献   

20.
Microbial Transformation of Quercetin by Bacillus cereus   总被引:2,自引:1,他引:1       下载免费PDF全文
Biotransformation of quercetin was examined with a number of bacterial cultures. In the presence of a bacterial culture (Bacillus cereus), quercetin was transformed into two crystalline products, identified as protocatechuic acid and quercetin-3-glucoside (isoquercitrin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号