首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
In petals of Silene dioica a gene P has been identified, which controls the 3′-hydroxylation of the B-ring of pelargonidin to cyanidin. Another gene Ac controls the acylation of the terminal sugar at the 3-position of anthocyanin 3-rhamnosylglucoside-5-glucosides. In p/p plants the bound acyl group is p-coumaric acid; in P/P plants, however, it is caffeic acid. Gene P seems to exert a pleiotropic effect: it not only controls the hydroxylation of the B-ring of pelargonidin but also that of the acyl group.  相似文献   

2.
3.
In petals of Silene dioica plants, an enzyme has been demonstrated which catalyses the transfer of the arabinose moiety of UDP-arabinose to the hydroxyl group on the 2″-position of the carbon-carbon bound glucose of isovitexin. The presence of this arabinosyltransferase activity is controlled by the dominant allele glA. Maximal activity takes place at pH 7.2–7.5; the reaction is stimulated by the divalent metal ions Mg and Mn. For optimal solubilization of the enzyme, Triton X-100 is necessary. Substrate specificity and kinetic behaviour have been investigated.  相似文献   

4.
Two separate genes, Fg and Vg, which govern the presence of isovitexin 2″-O-glucoside and vitexin 2″-O-glucoside respectively in the petals of Silene alba control different glucosyltransferases. In Vg/Vg,fg/fg plants no isovitexin 2″-O-glucosyltransferase was present and in vg/vg,Fg/Fg plants no vitexin 2″-O-glucosyltransferase activity could be detected. The Fg-controlled UDP-glucose: isovitexin 2″-O-glucosyltransferase has a pH optimum of8.5, while the Vg-controlled vitexin 2″- O-glucosyltransferase has a pH optimum of7.5. Both glucosyltransferases are stimulated by the divalent cations Ca2+, Co2+, Mn2+ and Mg2+. For isovitexin 2″-O-glucosylation, however, much higher concentrations are needed than for vitexin 2″-O-glucosylation.For UDP-glucose a ‘true Km’ value of0.3 mM with the Fg-controlled and of 0.2 mM with the Vg-controlled enzyme was found. For isovitexin and vitexin these values are respectively 0.09 and 0.01 mM.  相似文献   

5.
A.M. Steiner 《Phytochemistry》1977,16(11):1703-1704
The incorporation of phenylalanine-[14C] into anthocyanins of petals of Petunia hybrida is greater than that of cinnamic acid-[14C]. Moreover, there is a preferential incorporation of phenylalanine-[14C] into delphinidin 3-monoglucoside, as compared with the incorporation into cyanidin and peonidin 3-monoglucosides.  相似文献   

6.
Chalcone synthase activity was demonstrated in flower extracts of defined genotypes of Antirrhinum majus. Independent of the genetic state of the g  相似文献   

7.
An enzyme was detected in petal extracts of Melandrium album which catalysed the transfer of the xylose moiety of UDP-xylose to the 7-hydroxyl group of isovitexin. Genetical analysis revealed that the presence of the dominant allele gx was necessary for enzymic activity. This activity was independent of the residual genetic background. Xylosyltransferase activity is also present in extracts of gGgx plants, in which the product of the enzyme is not detectable. Maximal activity was found between pH 7·0 and 7·5; MnCl2 inhibited this transfer. The enzyme had an ‘apparent Km' value of 1·0 mM for UDP-xylose and of O·04 mM for isovitexin.  相似文献   

8.
Only UV light below 345 nm stimulates anthocyanin formation in dark grown cell suspension cultures of Haplopappus gracilis. A linear relationship between UV dose and flavonoid accumulation, as found previously with parsley cell cultures, was not observed with the H. gracilis cells. Only continuous irradiation with high doses of UV was effective. Drastic increases in the activities of the enzymes phenylalanine ammonia-lyase, chalcone isomerase and flavanone synthase were observed under continuous UV light. The increase in enzyme activities paralleled anthocyanin formation.  相似文献   

9.
Feeding experiments have shown that 2′-7-dihydroxy-4′-methoxy-isoflavone-[Me-14C] and -isoflavanone-[Me-14C] are efficient precursors of the phytoalexins demethylhomopterocarpin, sativan and vesitol in CuCl2-treated lucerne (Medicago sativa) seedlings. Demethylhomopterocarpin-[Me-14C] was also incorporated into sativan and vestitol, and vestitol-[Me-14C] was incorporated into demethylhomopterocarpin and sativan. Thus, the pterocarpan demethylhomopterocarpin and the 2′-hydroxy-isoflavan vestitol are interconvertible in M. sativa, but incorporation data, and the results of kinetic feeding experiments with l-phenylalanine-[U-14C] suggest that these compounds are synthesized simultaneously from a common intermediate, which could be involved in the interconversion. A carbonium ion, derived from an isoflavanol, a likely intermediate in the biosynthetic reductive sequence from 2′,7-dihydroxy-4′-methoxy-isoflavone and -isoflavanone, is proposed as this common intermediate. 7-Hydroxy-2′,4′-dimethoxyisoflavone-[4′-Me-14C] was a very poor precursor of all three phytoalexins. Sativan, then, is most probably derived by methylation of vestitol. The incorporation of vestitol-[Me-14C] into demethylhomopterocarpin, but not into maackiain, pterocarpan phytoalexins of red clover (Trifolium pratense), is also demonstrated.  相似文献   

10.
11.
The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid–general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid–general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step.  相似文献   

12.
13.
14.
15.
Soil salinity is an increasing problem, including in regions of the world where chickpea is cultivated. Salt sensitivity of chickpea was evaluated at both the vegetative and reproductive phase. Root-zone salinity treatments of 0, 20, 40 and 60 mM NaCl in aerated nutrient solution were applied to seedlings or to older plants at the time of flower bud initiation. Even the reputedly tolerant cultivar JG11 was sensitive to salinity. Plants exposed to 60 mM NaCl since seedlings, died by 52 d without producing any pods; at 40 mM NaCl plants died by 75 d with few pods formed; and at 20 mM NaCl plants had 78-82% dry mass of controls, with slightly higher flower numbers but 33% less pods. Shoot Cl exceeded shoot Na by 2-5 times in both the vegetative and reproductive phase, and these ions also entered the flowers. Conversion of flowers into pods was sensitive to NaCl. Pollen from salinized plants was viable, but addition of 40 mM NaCl to an in vitro medium severely reduced pollen germination and tube growth. Plants recovered when NaCl was removed at flower bud initiation, adding new vegetative growth and forming flowers, pods and seeds. Our results demonstrate that chickpea is sensitive to salinity at both the vegetative and reproductive phase, with pod formation being particularly sensitive. Thus, future evaluations of salt tolerance in chickpea need to be conducted at both the vegetative and reproductive stages.  相似文献   

16.
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA–DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CITT (= CCM 8479T = LMG 27751T) and Pseudocitrobacter anthropi sp. nov. with strain C138T (= CCM 8478T = LMG 27750T), as the type strains, respectively.  相似文献   

17.
The main cofactors of Photosystem II (PSII) are borne by the D1 and D2 subunits. In the thermophilic cyanobacterium Thermosynechococcus elongatus, three psbA genes encoding D1 are found in the genome. Among the 344 residues constituting the mature form of D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. In a previous study (Sugiura et al., J. Biol. Chem. 287 (2012), 13336-13347) we found that the oxidation kinetics and spectroscopic properties of TyrZ were altered in PsbA2-PSII when compared to PsbA(1/3)-PSII. The comparison of the different amino acid sequences identified the residues Cys144 and Pro173 found in PsbA1 and PsbA3, as being substituted in PsbA2 by Pro144 and Met173, and thus possible candidates accounting for the changes in the geometry and/or the environment of the TyrZ/His190 phenol/imidizol motif. Indeed, these amino acids are located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, D1/His190. Here, site-directed mutants of PSII, PsbA3/Pro173Met and PsbA2/Met173Pro, were analyzed using X- and W-band EPR and UV-visible time-resolved absorption spectroscopy. The Pro173Met substitution in PsbA2-PSII versus PsbA3-PSII is shown to be the main structural determinant of the previously described functional differences between PsbA2-PSII and PsbA3-PSII. In PsbA2-PSII and PsbA3/Pro173Met-PSII, we found that the oxidation of TyrZ by P680+● was specifically slowed during the transition between S-states associated with proton release. We thus propose that the increase of the electrostatic charge of the Mn4CaO5 cluster in the S2 and S3 states could weaken the strength of the H-bond interaction between TyrZ and D1/His190 in PsbA2 versus PsbA3 and/or induce structural modification(s) of the water molecules network around TyrZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号