首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydroxylation at C-3′ of maclurin, an intermediate in mangiferin biosynthesis, has been studied. Labelled cinnamic acid, p-coumaric acid, caffeic acid, iriflophenone and maclurin were fed to Anemarrhena asphodeloides. Cinnamic acid and p-coumaric acid were better precursors than caffeic acid for mangiferin, and iriflophenone as well as maclurin was effectively incorporated into mangiferin and isomangiferin. These results show that maclurin is biosynthesized via hydroxylation of iriflophenone derived from p-coumarate in this plant.  相似文献   

2.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

3.
p-Coumaric and 3-O-p-coumarylquinic acid seem to be important precursors of chlorogenic acid in the leaves of Cestrum poeppigii. 3-O-Cinnamylquinic acid, which has a very small metabolic activity, is of little importance in this respect. The kinetics of incorporation of radioactivity from t-cinnamic acid-3-[14C] into p-coumaric, 3-O-p-coumarylquinic, chlorogenic and 3-O-cinnamylquinic acid showed that the biosynthetic rates for these products decrease in the order shown. For p-coumaric acid, which has a markedly high metabolic activity, a turnover rate of 28 μg/hr and per gram fresh plant leaf, was calculated. Some trapping experiments with caffeic acid, and the acids mentioned above and using either t-cinnamic acid-3-[14C] or p-coumaric acid-2-[14C] as precursor, are discussed. A HPLC method for the rapid determination of phenolic acids in plant extracts, is described.  相似文献   

4.
When grown on glucose as principal carbon source the culture medium of Polyporus hispidus was found to contain phenolic acids, including p-coumaric and caffeic acids. 14C-Studies indicated that phenylalanine is converted to cinnamic acid as well as to phenylpyruvic acid and tyrosine in cultures. Cell-free preparations of mycelium contained phenylalanine and tyrosine ammonia-lyse activities and were capable of effecting the hydroxylation of cinnamic, p-coumaric and benzoic acids.  相似文献   

5.
Lactobacillus plantarum NC8 contains a pdc gene coding for p-coumaric acid decarboxylase activity (PDC). A food grade mutant, designated LPD1, in which the chromosomal pdc gene was replaced with the deleted pdc gene copy, was obtained by a two-step homologous recombination process using an unstable replicative vector. The LPD1 mutant strain remained able to weakly metabolize p-coumaric and ferulic acids into vinyl derivatives or into substituted phenyl propionic acids. We have shown that L. plantarum has a second acid phenol decarboxylase enzyme, better induced with ferulic acid than with p-coumaric acid, which also displays inducible acid phenol reductase activity that is mostly active when glucose is added. Those two enzymatic activities are in competition for p-coumaric and ferulic acid degradation, and the ratio of the corresponding derivatives depends on induction conditions. Moreover, PDC appeared to decarboxylate ferulic acid in vitro with a specific activity of about 10 nmol · min−1 · mg−1 in the presence of ammonium sulfate. Finally, PDC activity was shown to confer a selective advantage on LPNC8 grown in acidic media supplemented with p-coumaric acid, compared to the LPD1 mutant devoid of PDC activity.  相似文献   

6.
7.
The biosynthesis of l-azetidine-2-carboxylic acid and trans-3-hydroxy-l-proline has been studied in Delonix regia seedlings by labelled precursor feeding techniques. α,γ-Diaminobutyric acid was incorporated into azetidine-2-carboxylic acid more efficiently than homoserine, methionine or aspartic acid. More radioactivity from proline was found in trans-3-hydroxyproline after 2 day's than after 4-day's metabolism, indicating a continuous turnover of the hydroxyimino acid in seedlings.  相似文献   

8.
Biosynthetic pathways to p-hydroxybenzoic acid in polar lignin were examined by tracer experiments. High incorporation of radioactivity to the acid was observed when shikimic acid-[1-14C], phenylalanine-[3-14C], trans-cinnamic acid-[3-14C], p-coumaric acid-[3-14C] and p-hydroxybenzoic acid-[COOH-14C] were administered, while incorporation was low from shikimic acid-[COOH-14C], phenylalanine-[1-14C], phenylalanine-[2-14C], tyrosine-[3-14C], benzoic acid-[COOH-14C], sodium acetate-[1-14C] and d-glucose-[U-14C]. Thus p-hydroxybenzoic acid in poplar lignin is formed mainly via the pathway: shikimic acid → phenylalanine → trans-cinnamic acid → p-coumaric acid → p-hydroxybenzoic acid.  相似文献   

9.
Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.  相似文献   

10.
Fungal biotransformation of p-coumaric acid into caffeic acid, potentially a strong antioxidant, was evidenced in Pycnoporus cinnabarinus cultures grown with high feeding of p-coumaric acid. Preliminary experiments showed no toxicity of both p-coumaric and caffeic acids at concentrations ranging from 0 to 500 mg l–1. Feeding 450 mg p-coumaric acid l–1 into P. cinnabarinus cultures grown on 20 g l–1 glucose medium resulted in the production of 257 mg caffeic acid l–1with a molar yield of 21%.  相似文献   

11.
Parkinson’s disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (−)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1 μM (64.0 ± 3.1%) than both (−)-epicatechin (46.0 ± 4.1%, p < 0.05) and (+)-catechin (13.1 ± 3.0%, p < 0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.  相似文献   

12.
A survey of a range of plant tissues showed that the hydroxycinnamate CoA ligase in crude extracts of pea shoots had a high relative activity towards sinapic and other methoxycinnamic acids, together with high activity with p-coumaric acid. The pea enzyme has been resolved by chromatography on DEAE-cellulose into two peaks which differ in their substrate specificity. The form which elutes at relatively low salt concentrations has a ratio activity towards p-coumaric and sinapic acids of about 1.8:1 while the form eluting at higher salt concentrations, although showing very high activity with p-coumaric acid, is inactive towards sinapic acid. The pattern of elution of these forms following gel filtration on Ultragel AcA 34 and Sephadex G100 suggests that these two isoenzymes which differ in ionic properties and substrate specificity can exist in two or three molecular weight forms and there is evidence that these forms are under certain circumstances interconvertible.  相似文献   

13.
Apple fruit used for beverage production has a polyphenol oxidase which does not hydroxylate tyrosine under any conditions but it hydroxylates p-coumaric acid in the presence of NADH, and phloridzin in the absence of cofactors. The apparent Kms for hydroxylation of phloridzin and p-coumaric acid are 1.5 and 4 mM, respectively. However, subsequent oxidation of 3-hydroxyphloridzin or caffeic acid has an apparent Km of 200 nM. The oxidation products of 3-hydroxyphloridzin are complex and a stable dimeric quinone is finally formed. The apparent Kms for oxidation of catechin, epicatechin, chlorogenic acid, l-Dopa and 4-methyl catechol are 4.7, 5.7, 6.0, 2.7 and 3.2 mM, respectively. The Km for oxygen was 4.3 % although there was marked substrate inhibition by oxygen above 30 %. Polyphenol oxidase was stable at pH 3.5–4.5 with an optimum of 4.5.  相似文献   

14.
Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation.  相似文献   

15.
Soybean root growth inhibition and lignification induced by p-coumaric acid   总被引:1,自引:0,他引:1  
The effects of 0.25–2 mM p-coumaric acid, a phenylpropanoid metabolite with recognized allelopathic properties, were tested on root growth, cell viability, phenylalanine ammonia-lyase (PAL) activities, soluble and cell wall-bound peroxidase (POD) activities, hydrogen peroxide (H2O2) level and lignin content and its monomeric composition in soybean (Glycine max (L.) Merr.) roots. At ≥0.25 mM, exogenously supplied p-coumaric acid induced premature cessation of root growth, increased POD activity and lignin content and decreased the H2O2 content. At ≥0.5 mM, the allelochemical decreased the cell viability and PAL activity. When applied jointly with PIP (an inhibitor of the cinnamate 4-hydroxylase, C4H), 1 mM p-coumaric acid increased lignin content. In contrast, the application of MDCA (an inhibitor of the 4-coumarate:CoA ligase, 4CL) with p-coumaric acid did not increase lignin content. The lignin monomeric composition of p-coumaric acid-exposed roots revealed a significant increase of p-hydroxyphenyl (H) and guaiacyl (G) units. Taken together, these results suggest that p-coumaric acid's mode of action is entry via the phenylpropanoid pathway, resulting in an increase of H and G lignin monomers that solidify the cell wall and restrict soybean root growth.  相似文献   

16.
17.
Previous kinetic, isotopic studies have suggested that ‘insoluble’ phenolic esters may be precursors of lignin. Heretofore, the ‘insoluble’ esters have been detected by the chromatographic examinations of gross hydrolysis products of ethanol-insoluble resides and/or acetone powders. We have developed new methods for the isolation and purification of certain of the ethanol-insoluble, phenolic esters of Mentha arvensis. ‘Insoluble’ conjugates of caffeic, ferulic and p-coumaric acids were purified and were shown to be electro-phoretically and chromatographically homogeneous. These compounds were distinguished on the basis of their anionic mobility at pH 1·9. A second pool of caffeic acid was associated with a high MW fraction. Two acylated anthocyanins containing p-coumaric acid and caffeic acid were also obtained from acetone powders.  相似文献   

18.
焦晓林  毕晓宝  高微微 《生态学报》2015,35(9):3006-3013
西洋参(Panax quinquefolium L.)栽培中存在严重的连作障碍现象,前期发现p-香豆酸在以滤纸片为基质的条件下,能够显著抑制西洋参胚根的生长。为了明确p-香豆酸在土壤基质中对种胚的化感活性以及对成株西洋参生长的作用及生理机制,以自然土壤为基质,观察p-香豆酸作用后种胚的生长情况;采用室内水培试验,观察p-香豆酸作用下2年生西洋参种根从出苗至结果期的生长及部分生理指标的变化。种胚生长实验在土壤中分别添加0.0024、0.012、0.06、0.3、1.5、7.5 mg/g的p-香豆酸,处理7 d后测定西洋参种胚的胚根长和胚芽长。水培试验中全营养液中分别添加0.012 mg/mL、0.06 mg/mL、0.3 mg/mL p-香豆酸,处理后每隔5 d测定植株叶片展开情况、株高、冠幅等生长指标;于展叶期(10 d)、现蕾期(20 d)、结果期(30 d)测定地上部分及新生须根的生物量,同时测定新生须根苯丙氨酸解氨酶(PAL)活力;叶片完全展开后测定植株净光合速率(Pn)、表观电子传递速率(ETR)和最大光化学效率(Fv/Fm)等光合特性参数。结果表明,土壤中添加0.0024-7.5 mg/g p-香豆酸西洋参胚根长度降低28.52%-100%,胚芽长度降低1.09%-100%,并呈现一定的剂量抑制效应。实验浓度内的p-香豆酸可显著抑制西洋参植株地上部分生长,推迟展叶期;结果期地上部生物量比对照降低17.17%-54.55%(P < 0.05,Dunnett-t test);同时,叶片的PnETR受到抑制(P < 0.05),但Fv/Fm不变;对须根的影响主要表现为0.06 mg/mL p-香豆酸处理组在展叶期PAL酶活力提高69.05%,之后PAL活力和生物量均比对照下降,浓度增加至0.3 mg/mL时整个培养期内PAL酶活力和生物量均低于对照。由此推论,根系环境中的p-香豆酸在自然土壤中对西洋参种胚具有显著抑制其生长的化感作用;对成株西洋参的作用主要为抑制地上部分生长,并通过降低成株西洋参叶片光合能力,从而表现出明显的化感作用,0.06 mg/mL p-香豆酸诱导须根PAL酶活力先升高再降低并最终降低生物量的结果也表明p-香豆酸是西洋参根系生长的胁迫因素。结果证实p-香豆酸对西洋参种胚和成株的生长均具有自毒作用,其抑制生长的生理机制在于抑制叶片的光合作用。  相似文献   

19.
Malonic acid, mevalonic acid, geraniol and nerol were incorporated into tetrahydrocannabinolic acid and cannabichromenic acid in Cannabis sativa. The pathway from cannabigerolic acid to tetrahydrocannabinolic acid via cannabidiolic acid was established by feeding labelled cannabinoid acids. Cannabichromenic acid was shown to be formed on a side pathway from cannabigerolic acid.  相似文献   

20.
The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R 2 = 0.96, P < 0.0001. The kinetics of caffeic acid formation with time in response to initial p-coumaric acid levels and at different grape skin concentrations, indicated that the grape skins harboured an o-hydroxylation activity, proposedly a monophenol- or a flavonoid 3′-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K m of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号