首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Corpus callosum (CC) size is a complex trait, characterized by a gradation of values within a normal range, as well as abnormalities that include a small or totally absent CC. Among inbred mouse strains with defects of the CC, BTBR T(+)tf/J (BTBR) mice have the most extreme phenotype; all animals show total absence of the CC and severe reduction of the hippocampal commissure (HC). In contrast, the BALB/cByJ (BALB) strain has a low frequency of small CC and consistently normal HC. Reciprocal F(1) crosses between BTBR and BALB suggest the presence of X-linked quantitative trait loci (QTLs) affecting CC size. Through linkage analysis of backcross male progeny, we have localized two regions on the X chromosome, having peaks at 68.5 Mb (approximately 29.5 cM) and at 134.5 Mb (approximately 60.5 cM) that are largely responsible for the reciprocal differences, with the BTBR allele showing X-linked dominant inheritance associated with CC defects.  相似文献   

3.
Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry.  相似文献   

4.
5.
For studies of remyelination in demyelinating diseases, the cuprizone model of CC (corpus callosum) demyelination has experimental advantages that include overall size, proximity to neural stem cells of the subventricular zone, and correlation with a lesion predilection site in multiple sclerosis. In addition, cuprizone treatment can be ended to allow more direct analysis of remyelination than with viral or autoimmune models. However, CC demyelination lacks a useful functional correlate in rodents for longitudinal analysis throughout the course of demyelination and remyelination. In the present study, we tested two distinct behavioural measurements in mice fed 0.2% cuprizone. Running on a ‘complex'' wheel with varied rung intervals requires integration between cerebral hemispheres for rapid bilateral sensorimotor coordination. Maximum running velocity on the ‘complex'' wheel decreased during acute (6 week) and chronic (12 week) cuprizone demyelination. Running velocity on the complex wheel distinguished treated (for 6 weeks) from non-treated mice, even after a 6-week recovery period for spontaneous remyelination. A second behavioural assessment was a resident–intruder test of social interaction. The frequency of interactive behaviours increased among resident mice after acute or chronic demyelination. Differences in both sensorimotor coordination and social interaction correlated with demonstrated CC demyelination. The wheel assay is applicable for longitudinal studies. The resident–intruder assay provides a complementary assessment of a distinct modality at a specific time point. These behavioural measurements are sufficiently robust for small cohorts as a non-invasive assessment of demyelination to facilitate analysis of subsequent remyelination. These measurements may also identify CC involvement in other mouse models of central nervous system injuries and disorders.  相似文献   

6.
Human embryonic stem cells (hESCs) undergo self-renewal while maintaining pluripotency. However, the molecular mechanism that demonstrates how these cells maintain their undifferentiated state and how they selfrenew is poorly understood. Here, we characterized an aneuploidy H1 hESC subline (named H1T) using karyotyping and comparative genomic hybridization (CGH) microarray. Because the H1T hESC line displays a self-renewal advantage while maintaining an undifferentiated state, we speculated that the expression patterns of specific genes which are related to pluripotency or differentiation were altered; therefore, we attempted to screen for molecules that are propitious for maintenance of stemness by performing a combination of mRNA and CGH microarray analysis which compared the aneuploidy H1T hESC subline versus the euploid H1 hESC line. It is discovered that some genes are up-regulated in H1T hESC subline such as TBX2 and Wnt3, while some are downregulated, for example, Fbxo7 and HMG2L1. Our findings should fascilitate the study of the complex signaling network which maintains hESC pluripotency and function.  相似文献   

7.
赵佳  郭华  郭飞马 《生物信息学》2006,4(3):121-123
利用CCAP数据库和UCSC数据库检索出乳腺癌发生、发展过程有意义的BAC克隆,然后利用CGAP数据库设计更有意义的BAC克隆。结果:获得1286条BAC克隆,可用于打印CCH微阵列,进行乳腺癌的检测。  相似文献   

8.
Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome‐wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree‐ and genetic ancestry‐based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities.  相似文献   

9.
10.
Terminal 7q duplication and terminal 13q deletion are two conditions with variable phenotypes including microcephaly, thumb a-/hypoplasia, cortical dysplasia, microphtalmia, intellectual disability and dysmorphic features. We describe a boy born to a mother with a reciprocal t (7;13) who combines both a terminal 7q33-qter duplication and terminal 13q33-qter deletion through the inheritance of a derivative chromosome 13 (der (13)). The patient presented with developmental delay, facial and non-facial dysmorphic features, hypertonia, genital abnormality and skeletal malformation but no thumb a-/hypoplasia or microphtalmia. Knowing the exact breakpoints of his chromosomal aberrations using high resolution array CGH (aCGH) and comparison of his phenotypes with those of 24 and 59 previously published cases of 7q duplication and 13q deletion, respectively, allow us to further narrow the size of the proposed critical regions for microcephaly, thumb a-/hypoplasia and hypo/hypertonia on chromosome 13.  相似文献   

11.
12.

Background

The etiology of premature ovarian failure (POF) still remains undefined. Although the majority of clinical cases are idiopathic, there are possibilities of the underestimation of the most common etiologies, probably genetic causes. By reporting a case of POF with a partial Xp duplication and Xq deletion in spite of a cytogenetically 46,XX normal karyotype, we look forward that the genetic cause of POF will be investigated more methodically.

Methods

We performed a basic and clinical study at a university hospital-affiliated fertility center. The study population was a POF patient and her family. Cytogenetic analysis, FMR1 gene analysis, multiplex ligation-dependent probe amplification (MLPA), fluorescent in situ hybridization (FISH), and oligonucleotide-array based comparative genomic hybridization (array CGH) were performed.

Results

In spite of normal cytogenetic analysis in the proband and her mother and younger sister, FMR1 gene was not detected in the proband and her younger sister. In Southern blot analysis, the mother showed a normal female band pattern, but the proband and her younger sister showed no 5.2 kb methylated band. The abnormal X chromosome of the proband and her sister was generated from the recombination of an inverted X chromosome of the mother during maternal meiosis, and the karyotype of the proband was 46,XX,rec(X)dup(Xp)inv(X)(p22.1q27.3).

Conclusion

Array CGH followed by FISH allowed precise characterization of the der(X) chromosome and the initial karyotype of the proband had been changed to 46,XX,rec(X)dup(Xp)inv(X)(p22.3q27.3)mat.arr Xp22.33p22.31(216519–8923527)x3,Xq27.3q28(144986425–154881514)x1. This study suggests that further genetic investigation may be needed in the cases of POF with a cytogenetically 46,XX normal karyotype to find out the cause and solution for these disease entities.  相似文献   

13.
14.
15.
The original North American ex situ wildebeest population was believed to originate from the white-bearded wildebeest (Connochaetes taurinus albojubatus), which is both morphologically distinct and geographically separated from the brindled wildebeest (C. t. taurinus). However, after an import of wildebeest into North America in 2001, managers have suspected that white-bearded and brindled wildebeest were mixed in herds at multiple institutions. We sequenced the mitochondrial control region (d-loop) from a portion of the managed North American population and compared our sequences with previously published sequences from wild individuals to determine the subspecific identity and genetic diversity of our ex situ population. We were able to confidently identify C. t. albojubatus as the subspecies identity of the sampled portion of our population. Within our population, haplotype and nucleotide diversity were low (0.169 and 0.001, respectively) with a single common haplotype (H1) containing 41 of the 45 individuals sequenced, while two rare haplotypes (H2 and H3) were derived from three individuals and a single individual, respectively. Nucleotide and haplotype diversity were greater overall in the wild populations compared with our managed population. However, C. t. albojubatus was found to exhibit lower nucleotide diversity in both wild and ex situ populations when compared to other wild subspecies. Though the overall goal of the North American wildebeest population is for public education and not reintroduction, maintaining genetic diversity is vital for the long-term viability of this managed population, which may benefit from periodic supplementation of wild animals.  相似文献   

16.
Determining the genetic structure of isolated or fragmented species is of critical importance when planning a suitable conservation strategy. In this study, we use nuclear and chloroplast SSRs (simple sequence repeats) to investigate the population genetics of an extremely rare sunflower, Helianthus verticillatus Small, which is known from only three locations in North America. We investigated levels of genetic diversity and population structure compared to a more common congener, Helianthus angustifolius L., using both nuclear and chloroplast SSRs. We also investigated its proposed hybrid origin from Helianthus grosseserratus Martens and H. angustifolius. Twenty-two nuclear SSRs originating from the cultivated sunflower (Helianthus annuus L.) expressed sequence tag (EST) database, and known to be transferable to H. verticillatus and its putative parental taxa, were used in this study thereby allowing for statistical control of locus-specific effects in population genetic analyses. Despite its rarity, H. verticillatus possessed significantly higher levels of genetic diversity than H. angustifolius at nuclear loci and equivalent levels of chloroplast diversity. Significant levels of population subdivision were observed in H. verticillatus but of a magnitude comparable to that of H. angustifolius. Inspection of multilocus genotypes also revealed that clonal spread is highly localized. Finally, we conclude that H. verticillatus is not of hybrid origin as it does not exhibit a mixture of parental alleles at nuclear loci, and it does not share a chloroplast DNA haplotype with either of its putative parents.  相似文献   

17.
BACKGROUND: Genetic skeletal disorders of the fetus and infant are a large group of genetic disorders, comprising the groups formerly assigned as skeletal dysplasias (osteochondrodysplasias), dysostoses, and malformation syndromes with a skeletal component. Genetic skeletal disorders may be prenatally detected by ultrasonography or result in intrauterine or early postnatal death, constituting one difficult diagnostic field met by the pathologist who performs the perinatal autopsy. METHODS: In this retrospective study, we have gathered radiologic, physical, histopathologic, and molecular data regarding 41 cases of genetic skeletal disorders diagnosed among 1980 fetal and perinatal autopsies over a 10‐year period. RESULTS: Our series of cases were classified according to the 2006 Nosology and Classification of Genetic Skeletal Disorders. The overall frequency of genetic skeletal disorders was 1:48 autopsies. The FGFR3 group and osteogenesis imperfecta type 2 were the more frequently encountered disorders. The mean gestational age at autopsy was 21.9 weeks (range, 12–37 weeks). A final diagnosis was obtained in 95% of cases. Genetic skeletal disorders were detected by prenatal ultrasound in 90% of cases, with a correct typing of the disorder achieved in only 34%. Molecular analysis was confirmative in 5 cases. CONCLUSIONS: The central role of the perinatal pathologist in collaboration with specialized services is essential for the correct interpretation of the radiologic, physical, and histopathologic findings, to accurately classify specific types of genetic skeletal disorders and enable genetic counseling. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world’s largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.  相似文献   

19.
Here, we review the diversity, evolutionary history, and genomics of falcons in the context of their conservation and interactions with humans, and provide a perspective on how new genomic approaches may be applied to expand our knowledge of these topics. For millennia, humans and falcons (genus Falco) have developed unique relationships through falconry, religious rituals, conservation efforts, and human lifestyle transitions. From an evolutionary perspective, falcons remain an enigma. Having experienced several recent radiations, they have reached an unparalleled and almost global distribution, with an intrageneric species richness that is roughly an order of magnitude higher than typical within their family (Falconidae) and across other birds (Phylum: Aves). This diversity has evolved in the context of unusual genomic architecture that includes unique chromosomal rearrangements, relatively low chromosome counts, extremely low microdeletion rates, and high levels of nuclear mitochondrial DNA segments (NUMTs). These genomic peculiarities combine with high levels of ecological and organismal diversity and a legacy of human interactions to make falcons obvious candidates for evolutionary studies, providing unique research opportunities in common topics, including chromosomal evolution, the mechanics of speciation, local adaptation, domestication, and urban adaptation.  相似文献   

20.
While genetic origin of Dandy–Walker complex has not yet fully elucidated, the complex has been known to be associated with structural and chromosomal abnormalities. A partial trisomy 3q was also identified in patients with DWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号