首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The activities of Na,K-, Ca,Mg- and Mg-ATPases in the membrane fractions of plasma membranes of intestinal enterocytes of cattle, brush border and basolateral membranes, were studied. The activities were estimated under conditions of alkaline phosphatase activity inhibition by theophylline to exclude the nonspecific hydrolysis of ATP as well as to establish the orientation of vesicles with the use of alamethicine. 98% of the Na,K-ATPase activity (0.99 +/- 0.031 mumol/mg protein/min) was found to be localized in basolateral membranes. Both the brush border and basolateral membranes were found to possess the Ca,Mg-ATPase (0.193 +/- 0.018 and 0.795 +/- 0.025 mumol/mg protein/min) and Mg-ATPase (0.22 +/- 0.013 and 0.403 +/- 0.022 mumol.mg protein/min) activities.  相似文献   

2.
Transverse tubule (TT) membranes isolated from chicken skeletal muscle possess a very active magnesium-stimulated ATPase (Mg-ATPase) activity. The Mg-ATPase has been tentatively identified as a 102-kD concanavalin A (Con A)-binding glycoprotein comprising 80% of the integral membrane protein (Okamoto, V.R., 1985, Arch. Biochem. Biophys., 237:43-54). To firmly identify the Mg-ATPase as the 102-kD TT component and to characterize the structural relationship between this protein and the closely related sarcoplasmic reticulum (SR) Ca-ATPase, polyclonal antibodies were raised against the purified SR Ca-ATPase and the TT 102-kD glycoprotein, and the immunological relationship between the two ATPases was studied by means of Western immunoblots and enzyme-linked immunosorbent assays (ELISA). Anti-chicken and anti-rabbit SR Ca-ATPase antibodies were not able to distinguish between the TT 102-kD glycoprotein and the SR Ca-ATPase. The SR Ca-ATPase and the putative 102-kD TT Mg-ATPase also possess common structural elements, as indicated by amino acid compositional and peptide mapping analyses. The two 102-kD proteins exhibit similar amino acid compositions, especially with regard to the population of charged amino acid residues. Furthermore, one-dimensional peptide maps of the two proteins, and immunoblots thereof, show striking similarities indicating that the two proteins share many common epitopes and peptide domains. Polyclonal antibodies raised against the purified TT 102-kD glycoprotein were localized by indirect immunofluorescence exclusively in the TT-rich I bands of the muscle cell. The antibodies substantially inhibit the Mg-ATPase activity of isolated TT vesicles, and Con A pretreatment could prevent antibody inhibition of TT Mg-ATPase activity. Further, the binding of antibodies to intact TT vesicles could be reduced by prior treatment with Con A. We conclude that the TT 102-kD glycoprotein is the TT Mg-ATPase and that a high degree of structural homology exists between this protein and the SR Ca-ATPase.  相似文献   

3.
Although it is generally accepted that the efficacy of imidapril, an angiotensin-converting enzyme inhibitor, in congestive heart failure (CHF) is due to improvement of hemodynamic parameters, the significance of its effect on gene expression for sarcolemma (SL) and sarcoplasmic reticulum (SR) proteins has not been fully understood. In this study, we examined the effects of long-term treatment of imidapril on mortality, cardiac function, and gene expression for SL Na+/K+ ATPase and Na+ -Ca2+ exchanger as well as SR Ca2+ pump ATPase, Ca2+ release channel (ryanodine receptor), phospholamban, and calsequestrin in CHF due to myocardial infarction. Heart failure subsequent to myocardial infarction was induced by occluding the left coronary artery in rats, and treatment with imidapril (1 mg.kg(-1).day(-1)) was started orally at the end of 3 weeks after surgery and continued for 37 weeks. The animals were assessed hemodynamically and the heart and lung were examined morphologically. Some hearts were immediately frozen at -70 degrees C for the isolation of RNA as well as SL and SR membranes. The mortality of imidapril-treated animals due to heart failure was 31% whereas that of the untreated heart failure group was 64%. Imidapril treatment improved cardiac performance, attenuated cardiac remodeling, and reduced morphological changes in the heart and lung. The depressed SL Na+/K+ ATPase and increased SL Na+-Ca2+ exchange activities as well as reduced SR Ca2+ pump and SR Ca2+ release activities in the failing hearts were partially prevented by imidapril. Although changes in gene expression for SL Na+/K+ ATPase isoforms as well as Na+-Ca2+ exchanger and SR phospholamban were attenuated by treatments with imidapril, no alterations in mRNA levels for SR Ca2+ pump proteins and Ca2+ release channels were seen in the untreated or treated rats with heart failure. These results suggest that the beneficial effects of imidapril in CHF may be due to improvements in cardiac performance and changes in SL gene expression.  相似文献   

4.
Nitric oxide (NO*) is produced endogenously from NOS isoforms bound to sarcolemmal (SL) and sarcoplasmic reticulum (SR) membranes. To investigate whether locally generated NO* directly affects the activity of enzymes mediating ion active transport, we studied whether knockout of selected NOS isoforms would affect the functions of cardiac SL (Na+ + K+)-ATPase and SR Ca2+-ATPase. Cardiac SL and SR vesicles containing either SL (Na+ + K+)-ATPase or SR Ca2+-ATPase were isolated from mice lacking either nNOS or eNOS, or both, and tested for enzyme activities. Western blot analysis revealed that absence of single or double NOS isoforms did not interrupt the protein expression of SL (Na+ + K+)-ATPase and SR Ca2+-ATPase in cardiac muscle cells. However, lack of NOS isoforms in cardiac muscle significantly altered both (Na+ + K+)-ATPase activity and SR Ca2+-ATPase function. Our experimental results suggest that disrupted endogenous NO* production may change local redox conditions and lead to an unbalanced free radical homeostasis in cardiac muscle cells which, in turn, may affect key enzyme activities and membrane ion active transport systems in the heart.  相似文献   

5.
The direct effects of chronic ethanol administration on adenylate cyclase, Na,K-ATPase, and Mg-ATPase activities in a cell containing neuronal characteristics were investigated using PC12 pheochromocytoma cells. Exposure of PC12 cells to 0, 75, and 150 mM ethanol for 4 days caused a dose-dependent increase in the stimulation of adenylate cyclase by in vitro ethanol without altering activation of the enzyme by GTP, NaF, MnCl2, or 2-chloroadenosine. Conversely, a 4-day treatment with 150 mM ethanol increased Na,K-ATPase and Mg-ATPase activities without altering the inhibitory effects of in vitro ethanol. The increase in Na,K-ATPase activity was associated with an increase in Vmax without any change in the Km for KCl. Chronic ethanol exposure also increased the amount of [3H]ouabain specifically bound to PC12 cell membranes. Except for the increase in Mg-ATPase activity, the above results were also observed when chronic ethanol treatment was carried out in the presence of pyrazole. Although ethanol slowed PC12 cell growth, observed changes were not due to an ethanol-induced reduction in cellular density. A 4-day exposure of a nonneuronal cell line (Madin Darby canine kidney cell) to 150 mM ethanol did not alter adenylate cyclase or ATPase activities. The present study indicates that the direct effects of chronic ethanol exposure of a neuronal-like cell involve an increase in the density of sodium pumps per cell and an enhanced sensitivity of adenylate cyclase to activation by ethanol.  相似文献   

6.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

7.
S Takeo  M Sakanashi 《Enzyme》1985,34(3):152-165
Membrane-bound adenosinetriphosphatase (ATPase) activities of the sarcolemma-enriched fraction from bovine aorta were characterized. The membranes, isolated by a sucrose density gradient method, were enriched about 31-fold in sodium- and potassium-stimulated, magnesium-dependent ATPase (Na,K-ATPase) activity, and about 8-fold in 5'-nucleotidase activity compared to the homogenate, suggesting that the isolated membranes were substantially enriched with the sarcolemma. The membranes exhibited about 31, 33 and 42 mumol Pi/mg protein/h of Na,K-ATPase, magnesium-dependent ATPase and calcium-dependent ATPase activities, respectively, in the presence of 4 mmol/l ATP. The sarcolemma-enriched membranes required considerably high concentrations of well-known inhibitors for Na,K-ATPase such as vanadate (more than 1 mumol/l), lanthanum (more than 1 mmol/l) and calcium (10 mmol/l), to induce a significant inhibition in the Na,K-ATPase activity. Treatments of the membrane with physical disruptions and sodium dodecyl sulfate or deoxycholate reduced the total Na,K-ATPase activity, and did not expose fully the ouabain sensitivity of the Na,K-ATPase. These results indicate that there are marked differences in the properties of the ATPase between vascular smooth muscle sarcolemma and cardiac sarcolemma.  相似文献   

8.
Transverse tubule (TT) membrane vesicles contain a very active Mg-ATPase (EC 3.6.1.3). Concanavalin A (ConA) and other lectins were found to activate the TT Mg-ATPase from chicken skeletal muscle up to 25-fold yielding specific activities greater than 800 mumol/h/mg. The sarcoplasmic reticulum Ca-ATPase and the sarcolemma Na,K-ATPase were unaffected by ConA. 125I-Labeled lectin binding to the TT membrane Mr 102,000 glycoprotein supports the contention that this protein is identical with or is intimately associated with the TT Mg-ATPase. The ATPase exhibited non-Michaelis-Menton kinetics with both apparent negative cooperativity (n = 0.723; S0.5, Mg-ATP = 14 microM) and substrate inhibition (Ki, Mg-ATP = 10.2 mM), both of which were eliminated in the presence of ConA. Under the same conditions, ConA also abolished the unusual temperature dependence and potent Triton X-100 inhibition. The similarities in ConA suppression of both Triton and substrate inhibition suggest that these ligands may be interacting through a non-catalytic site and that Triton is serving as a nucleotide-mimetic agent. The unique kinetic responses are consistent with a homotropic substrate modifier mechanism wherein the enzyme can be viewed as possessing a single catalytic and a single regulatory site on a single polypeptide chain. It is proposed that ConA interferes either with ligand interaction at a putative regulatory site or blocks communication between a regulatory site and the catalytic site. The possible nature of the regulatory site and its modulation by a ConA-like, endogenous, skeletal muscle lectin and their combined role in excitation-contraction coupling is discussed.  相似文献   

9.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

10.
Besides the Mg-ATPase, a Na,K-ATPase can be demonstrated in different fractions of smooth muscles of the A. carotis communis of the sheep. The highest activity of Mg-ATPase is observed in the heavy microsomal fraction. The Ca-ion may act as a complete substitute for the Mg-ion in the Mg-ATPase. The proportion of Na,K-ATPase is between 10 and 40%, depending on the preparative conditions used in the individual fractions. Fractionated salt treatment (LiBr, KC1, KBr) improved the assay of Na,K-ATPase but increased strength of the Tris-HC1-buffer considerably reduced its activity.  相似文献   

11.
The subcellular fraction enriched in sarcolemmal vesicles was isolated from the longitudinal muscle (LM) and the circular muscle (CM) of the canine ileum by sucrose density gradient centrifugation. Treatment of the LM and CM membranes with sodium dodecylsulfate (0.2 mg/kg protein) led to a 3-fold increase in Na,K-ATPase activity (up to 24 and 39 mumol Pi/mg protein/h, respectively) and to a 90-95% inactivation of Mg-ATPase which was 2 and 8 times (for the CM and the LM, respectively) more active than Na,K-ATPase in the untreated sarcolemma. A specific inhibition of Na,K-ATPase activity by acetylcholine (Ach) and serotonin (ST) was observed which could de blocked in the presence of muscarinic and serotonin receptor antagonists. Sensitivity of the enzyme to ST was more than one order of magnitude higher than to Ach (IC50 = 10(-8) vs 1.2 x 10(-7) M). The inhibition of Na,K-ATPase activity by the neurotransmitters was more pronounced in the LM membranes (30-40%) than in the CM ones (10-20%). These data indicate that cell membranes of the LM and CM differ both in specific ATPase activities and the responsiveness of Na,K-ATPase to the receptor-mediated effects of Ach and ST.  相似文献   

12.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

13.
The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.  相似文献   

14.
Changes in the Mg-ATPase and Na, K-ATPase activity of the rat erythrocyte and Candida guilliermondii membranes under the effect of roseofungin were studied. The antibiotic was totally bound to the isolated plasmatic membranes of Candida guilliermondii, up to 3 micrograms of the antibiotic per 1 microgram of the yeast protein. The Mg-APTase activity of these membranes was slightly inhibited by the antibiotic. The activity of Na, K-ATPase was almost completely inhibited even at 0.04 mg of roseofungin per 1 mg of protein. Much higher concentrations of the antibiotic inhibited the Mg-ATPase and Na, K-ATPase activity of the erythrocyte membranes to a less extent.  相似文献   

15.
Na, K- and Mg-ATPase activity of the cerebral cortex microsomal fraction has been studied and compared in adult and old rats. The activity of Na, K-ATPase decreases while that of Mg-ATPase increases with age. The total ATPase activity remains unchanged. The effect of acetylcholine on ATPase activity has been found to be age-dependent.  相似文献   

16.
The effect of type C botulinum toxin on Na, K, Mg-ATPase activities of erythrocyte membranes of white rats was studied in experiments in vivo and in vitro. The activity of Na, K, Mg-ATPase was found to be markedly inhibited in the preclinical period of poisoning, 2 hours after intraperitoneal injection of the toxin. In this case Mg-ATPase activity noticeably increased. In the presence of the development of a grave paralytic syndrome one day after intraperitoneal injection of the toxin, the activity of Na, K-ATPase of the erythrocyte membrane remained decreased as was the case in the preclinical period of poisoning, whereas the activity of Mg-ATPase returned to normal. The experiments in vitro with preincubation of erythrocyte membranes with botulinum toxin in the concentrations corresponding to the mean calculated ones in the experiments in vivo demonstrated inhibition of Na, K-ATPase. The magnitude of Mg-ATPase activity remained virtually unchanged in all the modifications of the experiments with boiled and native botulinum toxin. The in-vivo experiments with intraperitoneal injection of glutathione and unithiol to the pretreated animals attested to normalization of Na, K-ATPase in the preclinical period of poisoning, with this normalization being brought about by unithiol. In the in-vitro experiments with addition of unithiol or glutathione into the incubation medium, each of the donators of sulphhydryl groups prevented Na, K-ATPase inhibition with botulinum toxin.  相似文献   

17.
A procedure was developed for the analytical isolation of brush border and basal lateral plasma membranes of intestinal epithelial cells. Brush border fragments were collected by low speed centrifugation, disrupted in hypertonic sorbitol, and subjected to density gradient centrifugation for separation of plasma membranes from nuclei and core material. Sucrase specific activity in the purified brush border plasma membranes was increased fortyfold with respect to the initial homogenate. Basal lateral membrane were harvested from the low speed supernatant and resolved from other subcellular components by equilibrium density gradient centrifugation. Recovery of Na, K-ATPase activity was 94%, and 61% of the recovered activity was present in a single symmetrical peak. The specific activity of Na, K-ATPase was increased twelvefold, and it was purified with respect to sucrase, succinic dehydrogenase, NADPH-cytochrome c reductase, nonspecific esterase, beta-glucuronidase, DNA, and RNA. The observed purification factors are comparable to results reported for other purification procedures, and the yield of Na, K-ATPase is greater by a factor of two than those reported for other procedures which produce no net increase in the Na, K-ATPase activity. Na, K-ATPase rich membranes are shown to originate from the basal lateral plasma membranes by the patterns of labeling that were produced when either isolated cells or everted gut sacs were incubated with the slowly permeating reagent 35S-p-(diazonium)-benzenesulfonic acid. In the former case subsequently purified Na, K-ATPase rich and sucrase rich membranes are labeled to the same extent, while in the latter there is a tenfold excess of label in the sucrase rich membranes. The plasma membrane fractions were in both cases more heavily labeled than intracellular protein. Alkaline phosphatase and calcium-stimulated ATPase were present at comparable levels on the two aspects of the epithelial cell plasma membrane, and 25% of the acid phosphatase activity was present on the basal lateral membrane, while it was absent from the brush border membrane. Less than 6% of the total Na, K-ATPase was present in brush border membranes.  相似文献   

18.
The sodium pump or Na,K-ATPase, maintains the Na+ and K+ gradients across eukaryotic cell membranes at the expense of ATP. Incubation of purified canine renal Na,K-ATPase with 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) inhibited the ATPase activity. Both the labeling of the protein and the loss of ATPase activity were prevented by co-incubation with ADP (acting as an ATP analog) or KCl. Only the alpha-subunit was labeled by SITS. The alpha-subunit from the inhibited enzyme was extensively digested with trypsin, and SITS-labeled peptides were purified by reverse-phase HPLC and sequenced. The amino acid sequence determined, His-Leu-Leu-Val-Met-X-Gly-Ala-Pro-Glu, indicated that SITS modifies Lys-501 (X) on the alpha-subunit of Na,K-ATPase.  相似文献   

19.
G Inesi  J A Cohen  C R Coan 《Biochemistry》1976,15(24):5293-5298
The "total" ATPase activity of rabbit sarcoplasmic reticulum (SR) vesicles includes a Ca2+-independent component ("basic") and Ca2+-dependent component ("extra"). Only the "extra" ATPase is coupled to Ca2+ transport. These activities can be measured under conditions in which the observed rates approximate maximal velocities. The "basic" ATPase is predominant in one of the various SR fractions obtained by prolonged density-gradient centrifugation of SR preparations already purified by repeated differential centrifugations and extractions at high ionic strength. This fraction (low dnesity, high cholesterol) has a protein composition nearly identical with that of other SR fractions in which the "extra" ATPase is predominant. In these other fractions the ratio of "extra" to "basic" ATPase activities is temperature dependent, being approximately 9.0 at 40 degrees C and 0.5 at 4 degrees C. In all the fractions and at all temperatures studied, similar steady-state levels of phosphorylated SR protein are obtained in the presence of ATP and Ca2+. Furthermore, in all cases the "basic" (Ca2+-independent) ATPase acquires total Ca2+ dependence upon addition of the nonionic detergent Triton X-100. This detergent also transforms the complex substrate dependence of the SRATPase into a simple dependence, displaying a single value for the apparent Km. The experimental findings indicate that the ATPase of rabbit SR exists in two distinct functional states (E1 and E2), only one of which (E2) is coupled to Ca2+ transport. The E1 in equilibrium E2 equilibrium is temperature-dependent and entropy-driven, indicative of its relation to the physical state of the ATPase protein in its membrane environment. Thenonlinearity of Arrhenius plots of Ca2+-dependent ("extra") ATPase activity and Ca2+ transport is explained in terms of simultaneous contribtuions from both the free energy of activation of enzyme catalysis and the free energy of conversion of E1 to E2. Thermal equilibrium between the two functional states is drastically altered by factors which affect membrane structure and local viscosity.  相似文献   

20.
Several functional properties of Na,K-ATPase are strongly dependent on membrane fatty acid composition, but the underlying mechanism is still not well defined. We have studied the effects of two types of supplementations enriched in the w3 polyunsaturated fatty acids on the Na,K-ATPase and Mg-ATPase activities in sciatic nerve (SN) and red blood cells (RBC). Eight groups of rats, controls and diabetics, received a standard diet, supplemented or not with 30 or 60 mg/kg/day of docosahexaenoic acid (DHA) or with soybean for eight weeks. Diabetes induced significant decrease of Na,K-ATPase activity in SN (-23%) and RBC (-25%), without affecting Mg-ATPase activity. In RBC, soybean and DHA supplementations caused significant increases in Na,K-ATPase activity (in various range, +13% to +145%) in all groups, and in Mg-ATPase activity in control soybean (+65%), control and diabetic DHA high dose (+39%, +53%) and diabetic DHA low dose (+131%) groups. In SN, the soybean caused a significant decrease in Na,K-ATPase activity (-26%) and still more in the diabetic group (-53%). The DHA diet induced a slight decrease in activity in control groups, whilst during diabetes, at high dose, we noted an aggravation of this decrease (-36%). Mg-ATPase activity was not modified by supplementations except for the low dose of DHA where the activity was slightly decreased in the control group (-16%). The supplementations induced multiple tissue-specific modifications in the membrane fatty acid composition of RBC and of SN homogenates. Several specific correlations have been found between variations in fatty acids amounts and Na,K-ATPase activity in these tissues but only in RBC for Mg-ATPase activity. Indeed, we observed that the variations in Na,K-ATPase activity are positively and significantly correlated with changes in the omega6/omega3 ratio in SN as well as in RBC. These data clearly show, for the first time, that the diet could modulate the Na,K-ATPase activity via the omega6/omega3 ratio in the membranes. A similar correlation was observed with Mg-ATPase activity in RBC, suggesting also a dietary regulation of the enzyme; but for the SN, this activity might be regulated by a different omega6/omega3 ratio or by another pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号