共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kumari R Subudhi S Suar M Dhingra G Raina V Dogra C Lal S van der Meer JR Holliger C Lal R 《Applied and environmental microbiology》2002,68(12):6021-6028
Hexachlorocyclohexane (HCH) has been used extensively against agricultural pests and in public health programs for the control of mosquitoes. Commercial formulations of HCH consist of a mixture of four isomers, alpha, beta, gamma, and delta. While all these isomers pose serious environmental problems, beta-HCH is more problematic due to its longer persistence in the environment. We have studied the degradation of HCH isomers by Sphingomonas paucimobilis strain B90 and characterized the lin genes encoding enzymes from strain B90 responsible for the degradation of HCH isomers. Two nonidentical copies of the linA gene encoding HCH dehydrochlorinase, which were designated linA1 and linA2, were found in S. paucimobilis B90. The linA1 and linA2 genes could be expressed in Escherichia coli, leading to dehydrochlorination of alpha-, gamma-, and delta-HCH but not of beta-HCH, suggesting that S. paucimobilis B90 contains another pathway for the initial steps of beta-HCH degradation. The cloning and characterization of the halidohydrolase (linB), dehydrogenase (linC and linX), and reductive dechlorinase (linD) genes from S. paucimobilis B90 revealed that they share approximately 96 to 99% identical nucleotides with the corresponding genes of S. paucimobilis UT26. No evidence was found for the presence of a linE-like gene, coding for a ring cleavage dioxygenase, in strain B90. The gene structures around the linA1 and linA2 genes of strain B90, compared to those in strain UT26, are suggestive of a recombination between linA1 and linA2, which formed linA of strain UT26. 相似文献
3.
Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer
下载免费PDF全文

Dogra C Raina V Pal R Suar M Lal S Gartemann KH Holliger C van der Meer JR Lal R 《Journal of bacteriology》2004,186(8):2225-2235
The organization of lin genes and IS6100 was studied in three strains of Sphingomonas paucimobilis (B90A, Sp+, and UT26) which degraded hexachlorocyclohexane (HCH) isomers but which had been isolated at different geographical locations. DNA-DNA hybridization data revealed that most of the lin genes in these strains were associated with IS6100, an insertion sequence classified in the IS6 family and initially found in Mycobacterium fortuitum. Eleven, six, and five copies of IS6100 were detected in B90A, Sp+, and UT26, respectively. IS6100 elements in B90A were sequenced from five, one, and one regions of the genomes of B90A, Sp+, and UT26, respectively, and were found to be identical. DNA-DNA hybridization and DNA sequencing of cosmid clones also revealed that S. paucimobilis B90A contains three and two copies of linX and linA, respectively, compared to only one copy of these genes in strains Sp+ and UT26. Although the copy number and the sequence of the remaining genes of the HCH degradative pathway (linB, linC, linD, and linE) were nearly the same in all strains, there were striking differences in the organization of the linA genes as a result of replacement of portions of DNA sequences by IS6100, which gave them a strange mosaic configuration. Spontaneous deletion of linD and linE from B90A and of linA from Sp+ occurred and was associated either with deletion of a copy of IS6100 or changes in IS6100 profiles. The evidence gathered in this study, coupled with the observation that the G+C contents of the linA genes are lower than that of the remaining DNA sequence of S. paucimobilis, strongly suggests that all these strains acquired the linA gene through horizontal gene transfer mediated by IS6100. The association of IS6100 with the rest of the lin genes further suggests that IS6100 played a role in shaping the current lin gene organization. 相似文献
4.
Suar M Hauser A Poiger T Buser HR Müller MD Dogra C Raina V Holliger C van der Meer JR Lal R Kohler HP 《Applied and environmental microbiology》2005,71(12):8514-8518
Sphingomonas paucimobilis B90A contains two variants, LinA1 and LinA2, of a dehydrochlorinase that catalyzes the first and second steps in the metabolism of hexachlorocyclohexanes (R. Kumari, S. Subudhi, M. Suar, G. Dhingra, V. Raina, C. Dogra, S. Lal, J. R. van der Meer, C. Holliger, and R. Lal, Appl. Environ. Microbiol. 68:6021-6028, 2002). On the amino acid level, LinA1 and LinA2 were 88% identical to each other, and LinA2 was 100% identical to LinA of S. paucimobilis UT26. Incubation of chiral alpha-hexachlorocyclohexane (alpha-HCH) with Escherichia coli BL21 expressing functional LinA1 and LinA2 S-glutathione transferase fusion proteins showed that LinA1 preferentially converted the (+) enantiomer, whereas LinA2 preferred the (-) enantiomer. Concurrent formation and subsequent dissipation of beta-pentachlorocyclohexene enantiomers was also observed in these experiments, indicating that there was enantioselective formation and/or dissipation of these enantiomers. LinA1 preferentially formed (3S,4S,5R,6R)-1,3,4,5,6-pentachlorocyclohexene, and LinA2 preferentially formed (3R,4R,5S,6S)-1,3,4,5,6-pentachlorocyclohexene. Because enantioselectivity was not observed in incubations with whole cells of S. paucimobilis B90A, we concluded that LinA1 and LinA2 are equally active in this organism. The enantioselective transformation of chiral alpha-HCH by LinA1 and LinA2 provides the first evidence of the molecular basis for the changed enantiomer composition of alpha-HCH in many natural environments. Enantioselective degradation may be one of the key processes determining enantiomer composition, especially when strains that contain only one of the linA genes, such as S. paucimobilis UT26, prevail. 相似文献
5.
Masai E Sasaki M Minakawa Y Abe T Sonoki T Miyauchi K Katayama Y Fukuda M 《Journal of bacteriology》2004,186(9):2757-2765
Sphingomonas paucimobilis SYK-6 degrades syringate to 3-O-methylgallate (3MGA), which is finally converted to pyruvate and oxaloacetate via multiple pathways in which protocatechuate 4,5-dioxygenase, 3MGA dioxygenase, and gallate dioxygenase are involved. Here we isolated the syringate O-demethylase gene (desA), which complemented the growth deficiency on syringate of a Tn5 mutant of the SYK-6 derivative strain. The desA gene is located 929 bp downstream of ferA, encoding feruloyl-coenzyme A synthetase, and consists of a 1,386-bp open reading frame encoding a polypeptide with a molecular mass of 50,721 Da. The deduced amino acid sequence of desA showed 26% identity in a 325-amino-acid overlap with that of gcvT of Escherichia coli, which encodes the tetrahydrofolate (H(4)folate)-dependent aminomethyltransferase involved in glycine cleavage. The cell extract of E. coli carrying desA converted syringate to 3MGA only when H(4)folate was added to the reaction mixture. DesA catalyzes the transfer of the methyl moiety of syringate to H(4)folate, forming 5-methyl-H(4)folate. Vanillate and 3MGA were also used as substrates for DesA; however, the relative activities toward them were 3 and 0.4% of that toward syringate, respectively. Disruption of desA in SYK-6 resulted in a growth defect on syringate but did not affect growth on vanillate, indicating that desA is essential to syringate degradation. In a previous study the ligH gene, which complements the growth deficiency on vanillate and syringate of a chemical-induced mutant of SYK-6, DC-49, was isolated (S. Nishikawa, T. Sonoki, T. Kasahara, T. Obi, S. Kubota, S. Kawai, N. Morohoshi, and Y. Katayama, Appl. Environ. Microbiol. 64:836-842, 1998). Disruption of ligH resulted in the same phenotype as DC-49; its cell extract, however, was found to be able to convert vanillate and syringate in the presence of H(4)folate. The possible role of ligH is discussed. 相似文献
6.
Enantioselective Transformation of α-Hexachlorocyclohexane by the Dehydrochlorinases LinA1 and LinA2 from the Soil Bacterium Sphingomonas paucimobilis B90A
下载免费PDF全文

Mrutyunjay Suar Andrea Hauser Thomas Poiger Hans-Rudolf Buser Markus D. Müller Charu Dogra Vishakha Raina Christof Holliger Jan Roelof van der Meer Rup Lal Hans-Peter E. Kohler 《Applied microbiology》2005,71(12):8514-8518
Sphingomonas paucimobilis B90A contains two variants, LinA1 and LinA2, of a dehydrochlorinase that catalyzes the first and second steps in the metabolism of hexachlorocyclohexanes (R. Kumari, S. Subudhi, M. Suar, G. Dhingra, V. Raina, C. Dogra, S. Lal, J. R. van der Meer, C. Holliger, and R. Lal, Appl. Environ. Microbiol. 68:6021-6028, 2002). On the amino acid level, LinA1 and LinA2 were 88% identical to each other, and LinA2 was 100% identical to LinA of S. paucimobilis UT26. Incubation of chiral α-hexachlorocyclohexane (α-HCH) with Escherichia coli BL21 expressing functional LinA1 and LinA2 S-glutathione transferase fusion proteins showed that LinA1 preferentially converted the (+) enantiomer, whereas LinA2 preferred the (−) enantiomer. Concurrent formation and subsequent dissipation of β-pentachlorocyclohexene enantiomers was also observed in these experiments, indicating that there was enantioselective formation and/or dissipation of these enantiomers. LinA1 preferentially formed (3S,4S,5R,6R)-1,3,4,5,6-pentachlorocyclohexene, and LinA2 preferentially formed (3R,4R,5S,6S)-1,3,4,5,6-pentachlorocyclohexene. Because enantioselectivity was not observed in incubations with whole cells of S. paucimobilis B90A, we concluded that LinA1 and LinA2 are equally active in this organism. The enantioselective transformation of chiral α-HCH by LinA1 and LinA2 provides the first evidence of the molecular basis for the changed enantiomer composition of α-HCH in many natural environments. Enantioselective degradation may be one of the key processes determining enantiomer composition, especially when strains that contain only one of the linA genes, such as S. paucimobilis UT26, prevail. 相似文献
7.
Shweta Malhotra Pooja Sharma Hansi Kumari Ajaib Singh Rup Lal 《Indian journal of microbiology》2007,47(3):271-275
The locations of hexachlorocyclohexane (HCH) catabolic (lin) genes were investigated in HCH degrading sphingomonad, Sphingobium indicum B90A (that was isolated from India). Southern blot analysis revealed the presence of linA1, linC, linDER and linX (linX1 and linX2) on the plasmid DNA in Sphingobium indicum B90A. 相似文献
8.
The effects of alpha, beta, gamma, and delta isomers of hexachlorocyclohexane on concanavalin A 'capping' in bovine lymphocytes were evaluated, gamma and delta hexochlorocyclohexane inhibited 'capping' whereas the alpha and beta isomers were without effect. In addition, gamma-hexachlorocyclohexane has been shown to antagonize the maintenance of preformed 'caps' and cause the rapid dispersal of the concanavalin A-receptor complexes over the surface of cells by a temperature-dependent mechanism. The possible role of a gamma-hexachlorocyclohexane-sensitive process in the organization of microflow patterns in the lectin-activated lymphocyte membrane is discussed. 相似文献
9.
The molecular chaperone Heat shock protein 90 (Hsp90) promotes the maturation of several important proteins and plays a key role in development, cancer progression, and evolutionary diversification. By mapping chromatin-binding sites of Hsp90 at high resolution across the Drosophila genome, we uncover an unexpected mechanism by which Hsp90 orchestrates cellular physiology. It localizes near promoters of many coding and noncoding genes including microRNAs. Using computational and biochemical analyses, we find that Hsp90 maintains and optimizes RNA polymerase II pausing via stabilization of the negative elongation factor complex (NELF). Inhibition of Hsp90 leads to upregulation of target genes, and Hsp90 is required for maximal activation of paused genes in Drosophila and mammalian cells in response to environmental stimuli. Our findings add a molecular dimension to the chaperone's functionality with wide ramifications into its roles in health, disease, and evolution. 相似文献
10.
Peng X Masai E Kasai D Miyauchi K Katayama Y Fukuda M 《Applied and environmental microbiology》2005,71(9):5014-5021
A lignin-related biphenyl compound, 5,5'-dehydrodivanillate (DDVA), is degraded to 5-carboxyvanillate (5CVA) by the enzyme reactions catalyzed by DDVA O-demethylase (LigX), meta-cleavage oxygenase (LigZ), and meta-cleavage compound hydrolase (LigY) in Sphingomonas paucimobilis SYK-6. 5CVA is then transformed to vanillate by a nonoxidative 5CVA decarboxylase and is further degraded through the protocatechuate 4,5-cleavage pathway. A 5CVA decarboxylase gene, ligW, was isolated from SYK-6 (X. Peng, E. Masai, H. Kitayama, K. Harada, Y, Katayama, and M. Fukuda, Appl. Environ. Microbiol. 68:4407-4415, 2002). However, disruption of ligW slightly affected the 5CVA decarboxylase activity and the growth rate on DDVA of the mutant, suggesting the presence of an alternative 5CVA decarboxylase gene. Here we isolated a second 5CVA decarboxylase gene, ligW2, which consists of a 1,050-bp open reading frame encoding a polypeptide with a molecular mass of 39,379 Da. The deduced amino acid sequence encoded by ligW2 exhibits 37% identity with the sequence encoded by ligW. Based on a gas chromatography-mass spectrometry analysis of the reaction product from 5CVA catalyzed by LigW2 in the presence of deuterium oxide, LigW2 was indicated to be a nonoxidative decarboxylase of 5CVA, like LigW. After disruption of ligW2, both the growth rate on DDVA and the 5CVA decarboxylase activity of the mutant were decreased to approximately 30% of the wild-type levels. The ligW ligW2 double mutant lost both the ability to grow on DDVA and the 5CVA decarboxylase activity. These results indicate that both ligW and ligW2 contribute to 5CVA degradation, although ligW2 plays the more important role in the growth of SYK-6 cells on DDVA. 相似文献
11.
Raina V Suar M Singh A Prakash O Dadhwal M Gupta SK Dogra C Lawlor K Lal S van der Meer JR Holliger C Lal R 《Biodegradation》2008,19(1):27-40
Soil pollution with hexachlorocyclohexane (HCH) has caused serious environmental problems. Here we describe the targeted degradation
of all HCH isomers by applying the aerobic bacterium Sphingobium indicum B90A. In particular, we examined possibilities for large-scale cultivation of strain B90A, tested immobilization, storage
and inoculation procedures, and determined the survival and HCH-degradation activity of inoculated cells in soil. Optimal
growth of strain B90A was achieved in glucose-containing mineral medium and up to 65% culturability could be maintained after
60 days storage at 30°C by mixing cells with sterile dry corncob powder. B90A biomass produced in water supplemented with
sugarcane molasses and immobilized on corncob powder retained 15–20% culturability after 30 days storage at 30°C, whereas
full culturability was maintained when cells were stored frozen at −20°C. On the contrary, cells stored on corncob degraded
γ-HCH faster than those that had been stored frozen, with between 15 and 85% of γ-HCH disappearance in microcosms within 20 h
at 30°C. Soil microcosm tests at 25°C confirmed complete mineralization of [14C]-γ-HCH by corncob-immobilized strain B90A. Experiments conducted in small pits and at an HCH-contaminated agricultural site
resulted in between 85 and 95% HCH degradation by strain B90A applied via corncob, depending on the type of HCH isomer and
even at residual HCH concentrations. Up to 20% of the inoculated B90A cells survived under field conditions after 8 days and
could be traced among other soil microorganisms by a combination of natural antibiotic resistance properties, unique pigmentation
and PCR amplification of the linA genes. Neither the addition of corncob nor of corncob immobilized B90A did measurably change the microbial community structure
as determined by T-RFLP analysis. Overall, these results indicate that on-site aerobic bioremediation of HCH exploiting the
biodegradation activity of S. indicum B90A cells stored on corncob powder is a promising technology. 相似文献
12.
Peng X Masai E Kitayama H Harada K Katayama Y Fukuda M 《Applied and environmental microbiology》2002,68(9):4407-4415
Sphingomonas paucimobilis SYK-6 degrades a lignin-related biphenyl compound, 5,5'-dehydrodivanillate (DDVA), to 5-carboxyvanillate (5CVA) by the enzyme reactions catalyzed by the DDVA O-demethylase (LigX), the ring cleavage oxygenase (LigZ), and the meta-cleavage compound hydrolase (LigY). In this study we examined the degradation step of 5CVA. 5CVA was transformed to vanillate, O-demethylated, and further degraded via the protocatechuate 4,5-cleavage pathway by this strain. A cosmid clone which conferred the 5CVA degradation activity to a host strain was isolated. In the 7.0-kb EcoRI fragment of the cosmid we found a 1,002-bp open reading frame responsible for the conversion of 5CVA to vanillate, and we designated it ligW. The gene product of ligW (LigW) catalyzed the decarboxylation of 5CVA to produce vanillate along with the specific incorporation of deuterium from deuterium oxide, indicating that LigW is a nonoxidative decarboxylase of 5CVA. LigW did not require any metal ions or cofactors for its activity. The decarboxylase activity was specific to 5CVA. Inhibition experiments with 5CVA analogs suggested that two carboxyl groups oriented meta to each other in 5CVA are important to the substrate recognition by LigW. Gene walking analysis indicated that the ligW gene was located on the 18-kb DNA region with other DDVA catabolic genes, including ligZ, ligY, and ligX. 相似文献
13.
A molasses based medium for the production of gellan by Sphingomonas paucimobilis ATCC-31461 was developed. Placket-Burman design criterion was applied to study the effect of various nutrient supplements on gellan production using molasses. Among the 20 variables tested, molasses, tryptone, casaminoacid, disodium hydrogen orthophosphate and manganese chloride showed significant effect on gellan production. A central composite design was applied to determine the optimum concentrations of the significant variables obtained from Placket-Burman design. Most suitable medium composition for production of gellan was (g/l): molasses-112.5; tryptone-1; casaminoacid-1; disodium hydrogen orthophosphate-1; manganese chloride-0.947 and the optimum gellan production was 13.814 g/l. 相似文献
14.
Sphingomonas paucimobilis SYK-6 has the ability to transform a lignin-related biphenyl compound, 2,2'-dihydroxy-3,3'-dimethoxy-5, 5'-dicarboxybiphenyl (DDVA), to 5-carboxyvanillic acid (5CVA) via 2, 2',3-trihydroxy-3'-methoxy-5,5'-dicarboxybiphenyl (OH-DDVA). In the 4.9-kb HindIII fragment containing the OH-DDVA meta-cleavage dioxygenase gene (ligZ), we found a novel hydrolase gene (ligY) responsible for the conversion of the meta-cleavage compound of OH-DDVA to 5CVA. Incorporation of 18O from H218O into 5CVA indicated there was a hydrolytic conversion of the OH-DDVA meta-cleavage compound to 5CVA. LigY exhibited hydrolase activity only toward the meta-cleavage compound of OH-DDVA, suggesting its restricted substrate specificity. 相似文献
15.
Sonoki T Obi T Kubota S Higashi M Masai E Katayama Y 《Applied and environmental microbiology》2000,66(5):2125-2132
Sphingomonas paucimobilis SYK-6 can grow on several dimeric model compounds of lignin as a carbon and energy source. It has O demethylation systems on three kinds of substrates: 5, 5'-dehydrodivanillic acid (DDVA), syringate, and vanillate. We previously reported the cloning of a gene involved in the tetrahydrofolate-dependent O demethylation of syringate and vanillate. In the study reported here, we cloned the gene responsible for DDVA O demethylation. Using nitrosoguanidine mutagenesis, a mutant strain, NT-1, which could not degrade DDVA but could degrade syringate and vanillate, was isolated and was used to clone the gene responsible for the O demethylation of DDVA by complementation. Sequencing analysis showed an open reading frame (designated ligX) of 1,266 bp in this fragment. The deduced amino acid sequence of LigX had similarity to class I type oxygenases. LigX was involved in O demethylation activity on DDVA but not on vanillate and syringate. DDVA O demethylation activity in S. paucimobilis SYK-6 cell extracts was inhibited by addition of the LigX polyclonal antiserum. Thus, LigX is an essential enzyme for DDVA O demethylation in SYK-6. S. paucimobilis SYK-6 has two O demethylation systems: one is an oxygenative demethylase system, and the other is a tetrahydrofolate-dependent methyltransferase system. 相似文献
16.
Plant gene expression in response to pathogens 总被引:13,自引:0,他引:13
17.
Controlling gene expression in response to stress 总被引:2,自引:0,他引:2
18.
19.
A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6
下载免费PDF全文

Vanillate and syringate are converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by O-demethylases in Sphingomonas paucimobilis SYK-6. PCA is further degraded via the PCA 4,5-cleavage pathway, while 3MGA is degraded through multiple pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and an unidentified 3MGA O-demethylase and gallate dioxygenase are participants. For this study, we isolated a 4.7-kb SmaI fragment that conferred on Escherichia coli the activity required for the conversion of vanillate to PCA. The nucleotide sequence of this fragment revealed an open reading frame of 1,413 bp (ligM), the deduced amino acid sequence of which showed 49% identity with that of the tetrahydrofolate (H4folate)-dependent syringate O-demethylase gene (desA). The metF and ligH genes, which are thought to be involved in H4folate-mediated C1 metabolism, were located just downstream of ligM. The crude LigM enzyme expressed in E. coli converted vanillate and 3MGA to PCA and gallate, respectively, with similar specific activities, and only in the presence of H4folate; however, syringate was not a substrate for LigM. The disruption of ligM led to significant growth retardation on both vanillate and syringate, indicating that ligM is involved in the catabolism of these substrates. The ability of the ligM mutant to transform vanillate was markedly decreased, and this mutant completely lost the 3MGA O-demethylase activity. A ligM desA double mutant completely lost the ability to transform vanillate, thus indicating that desA also contributes to vanillate degradation. All of these results indicate that ligM encodes vanillate/3MGA O-demethylase and plays an important role in the O demethylation of vanillate and 3MGA, respectively. 相似文献
20.
Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6
下载免费PDF全文

Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate (PCA) and 3-O-methylgallate (3MGA) in reactions with the tetrahydrofolate-dependent O-demethylases LigM and DesA, respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, whereas 3MGA is metabolized via three distinct pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and 3MGA O-demethylase (LigM) are involved. In the 3MGA O-demethylation pathway, LigM converts 3MGA to gallate, and the resulting gallate appears to be degraded by a dioxygenase other than LigAB or DesZ. Here, we isolated the gallate dioxygenase gene, desB, which encodes a 418-amino-acid protein with a molecular mass of 46,843 Da. The amino acid sequences of the N-terminal region (residues 1 to 285) and the C-terminal region (residues 286 to 418) of DesB exhibited ca. 40% and 27% identity with the sequences of the PCA 4,5-dioxygenase beta and alpha subunits, respectively. DesB produced in Escherichia coli was purified and was estimated to be a homodimer (86 kDa). DesB specifically attacked gallate to generate 4-oxalomesaconate as the reaction product. The K(m) for gallate and the V(max) were determined to be 66.9 +/- 9.3 microM and 42.7 +/- 2.4 U/mg, respectively. On the basis of the analysis of various SYK-6 mutants lacking the genes involved in syringate degradation, we concluded that (i) all of the three-ring cleavage dioxygenases are involved in syringate catabolism, (ii) the pathway involving LigM and DesB plays an especially important role in the growth of SYK-6 on syringate, and (iii) DesB and LigAB are involved in gallate degradation. 相似文献