首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extra- and intracellular responses of neurons in the primary somatosensory cortex to repetitive mechanical stimulation of the vibrissae at different frequencies were studied in unanesthetized curarized adult cats. Unlike responses to electrical stimulation of the combined afferent input (the infraorbital nerve) spike discharges of neurons in response to vibrissal stimulation can reproduce rather higher frequencies of stimulation and their initial character changes more often in the course of the repetitive series. Most cortical neurons were characterized by limitation of the area of their peripheral receptive fields with an increase in the frequency of adequate repetitive stimulation. A group of cortical neurons was distinguished by its ability to respond to high-frequency stimulation and to generate burst discharges. Comparison of the frequency characteristics of spike responses of these cells and of inhibitory synaptic action in other cortical neurons led to the conclusion that this group of cells thus distinguished may be inhibitory cortical neurons. The role of interaction between excitatory and inhibitory processes arising in cortical neurons during repetitive stimulation of different areas of their receptive fields is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 164–171, March–April, 1982.  相似文献   

2.
Receptive fields of 262 pulvinar neurons were studied. Receptive fields of 142 of these neurons were studied in detail with the aid of a stationary spot of light, flashing in different parts of the receptive field. Depending on responses to presentation of the stationary stimulus the neurons were divided into six groups. The first group included neurons with on—off responses to photic stimulation (44 of 142), the second group neurons with off responses only (42 of 142). In cells of the third group (19 of 142) an on response only was recorded in all structures of the receptive field tested. Neurons of the fourth group (eight of 142) had a receptive field of similar structure to that of the simple receptive fields of neurons in cortical area 17. The fifth group (10 of 142) included neurons with a receptive field of concentric structure, the sixth (19 of 142) consisted of neurons with receptive fields with multiple discharge centers. The structure of the receptive field of these neurons was mosaic, with an irregular distribution of exciting and "silent" zones. The mean response latency of the pulvinar neurons was 40–70 msec. Responses of neurons with shorter (20 msec) and longer (130–160 msec) latent periods also were recorded.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 3–10, January–February, 1979.  相似文献   

3.
Responses of 375 primary somatosensory cortical neurons located in the projection area of the vibrissae to electrical stimulation of the infraorbital nerve and also to adequate stimulation of the vibrissae were investigated in unanesthetized cats immobilized with tubocurarine. Stimulation of the nerve and vibrissae most frequently evoked synaptic responses in the neurons, in the form of a short EPSP followed by an IPSP or, less frequently, as a primary IPSP; during extracellular recordings corresponding changes were observed in spike activity. In response to stimulation of the vibrissae, initial inhibition was found more often than to stimulation of the nerve (in 45 and 16% of neurons respectively). The difference between the minimal values of latent periods of IPSP and EPSP evoked by stimulation of the infraorbital nerve was 0.8 msec in different neurons, and the difference between the mean values 1.4 msec. Directional sensitivity of the cortical neurons was demonstrated (to a change in the direction of deflection of the vibrissae). Neurons located close together could differ in the character of their directional sensitivity during stimulation of the same vibrissae. It is concluded that short-latency inhibition arising in the primary projection area of the cat somatosensory cortex is predominantly afferent and not recurrent. The probable mechanisms of directional sensitivity of the neurons studied are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologia, Vol. 11, No. 6, pp. 550–559, November, 1979.  相似文献   

4.
Vibrissae trimming during the first 20 days of postnatal life caused alternations of the properties of the receptive fields of single neurons in the barrel-field cortex in rats. The following changes were found in the deafferented cortex: (i) an extension of the receptive fields of single neurons as judged from an increase in the number of vibrissae with short-latency excitatory responses to stimulation and (ii) a depression of the inhibitory receptive field tuning mechanisms.  相似文献   

5.
Responses of 200 primary auditory cortical neurons to electrical stimulation of nerve fibers in different receptor zones of the cochlea were studied in cats anesthetized with pentobarbital. Under the influence of paired stimulation, after the response to the conditioning stimulus a state of prolonged (from 4 to 200 msec) refractiveness to the second stimulus developed in all the neurons tested. This long-lasting inhibition of unit activity was due to inhibition developing in the thalamus and the auditory cortex itself. The intensity and duration of excitation and inhibition in the cortical projection focus were maximal when the center of the receptive field was stimulated and decreased when the stimulus shifted from the center to the periphery. The region of the receptor surface of the cochlea to stimulation of which the auditory cortical neurons respond by an action potential is much narrower than the region whose electrical stimulation depresses the discharge of these neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 418–425, July–August, 1982.  相似文献   

6.
Characteristics of extra- and intracellular responses of 57 neurons in the vibrissal projection zone of the first somatosensory area of the cat cortex were investigated. The intensity of both excitatory and inhibitory unit responses was found to diminish during successive stimulation of different parts of the receptive fields in the direction from center toward periphery. Usually, when central parts of receptive fields were stimulated, inhibition in the unit responses was postexcitatory, whereas when peripheral parts were stimulated inhibition could precede excitation. The possibility of an increase in the role of interaction between excitatory and inhibitory processes arising in neurons in response to vibrissal stimulation with an increase in the distance from center to periphery of receptive fields of single cortical cells is discussed. Neurons found during one insertion of the microelectrode were seen to have common center for their receptive fields, but the diameters of the receptive fields of individual neurons could differ significantly. Moreover, during such vertical insertions responses of neurons with primary inhibition to the stimuli presented were recorded.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 124–130, March–April, 1980.  相似文献   

7.
Spike responses of single neurons in the primary visual cortex and lateral geniculate body to random presentation of local photic stimuli in different parts of the receptive field of the cell were studied in acute experiments on curarized cats. Series of maps of receptive fields with time interval of 20 msec obtained by computer enabled the dynamics of the excitatory and inhibitory zones of the field to be assessed during development of on- and off-responses to flashes. Receptive fields of all cortical and lateral geniculate body neurons tested were found to undergo regular dynamic reorganization both after the beginning and after the end of action of the photic stimulus. During the latent period of the response no receptive field was found in the part of the visual field tested, but later a small zone of weak responses appeared only in the center of the field. Gradually (most commonly toward 60–100 msec after application of the stimulus) the zone of the responses widened to its limit, after which the recorded field began to shrink, ending with complete disappearance or disintegration into separate fragments. If two bursts of spikes were generated in response to stimulation, during the second burst the receptive field of the neuron changed in the same way. The effects described were clearly exhibited if the level of background illumination, the intensity of the test bars, their contrast with the background, duration, angles subtended, and orientation were varied, although the rate and degree of reorganization of the receptive field in this case changed significantly. The functional importance of the effect for coding of information about the features of a signal by visual cortical neurons is discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 622–630, November–December, 1982.  相似文献   

8.
The effect of parameters of local photic stimulation of different points of the receptive field on the characteristics of dynamic reorganization of receptive fields of cortical and geniculate visual neurons within microintervals of time observed previously was studied in computer-controlled experiments on unanesthetized, curarized cats. Dependence on the degree of widening of the receptive field and the temporal characteristics of this process on the background illumination level, intensity, contrast, area, duration, energy, and orientation of a local rectangular or circular photic stimulus flashing in random order at 100 points of the tested part of the visual field was studied. It was concluded that the background illumination level and the intensity, size, duration, and orientation of the stimulus have a specific effect on dynamic reorganization of the receptive field. The effects of all the parameters studied on the dynamics of the receptive field were shown to be nonlinear functions with optimal values that differed for different cells. The possible functional role of this effect and also the probability that it may participate in information coding in the visual system are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 339–346, July–August, 1983.  相似文献   

9.
Electrical activity of single unit in the Clare-Bishop visual association area of the cortex was studied in acute experiments on cats immobilized with Flaxedil and after pretrigeminal sections. The method of extracellular recording of action potentials of single units was used. The experimental results showed that 95.5% of cells responding to visual stimulation responded to movement of a spot of light in the receptive field of the neurons, and 55% of the cells responded selectively to the direction of movement. Some neurons responded to movement of a stimulus only when it entered and left the receptive field. About 85.3% of cells responded to a flashing spot of light, and also to a general change in the intensity of illumination of the receptive field. The receptive field of neurons of the Clare-Bishop area in most cases were in the form of stripes with their long axis horizontal. The results point to the important role of this cortical association area in the central analysis of visual information.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 22–29, January–February, 1978.  相似文献   

10.
Distribution maps of cortical potentials evoked by mechanical stimulation of different number of contralateral vibrissae were studied. It was found that stimulation of all the contralateral vibrissae led to more extensive activation than the barrel field in the somatosensory cortex. The activation was most widespread when all the vibrissae were synchronously deflected. With reduction of the number of synchronously stimulated whiskers the activated cortical area did not decrease in parallel. Deflection of only a few whiskers activated significantly smaller cortical areas.  相似文献   

11.
Orientation tuning of 148 primary visual cortical neurons was studied in acute experiments on unanesthetized, curarized cats by analysis of their spike responses to flashes in a receptive field of a bar of light of optimal size. Orientation tuning of 88 neurons (59%) was found to be bimodal: Besides the principal preferred orientation there was a second, making an angle with the first. The second tuning maximum in some cases (64%) was exhibited only with a change in stimulus intensity or background brightness. Analysis of orientation tuning by the time-slice method, i.e., on the basis of individual cuts of the spike trace, showed double tuning to be present in 69% of cases only at certain moments after the beginning of stimulation. The results of analysis of the model showed that the double orientation tuning effect may be the result of the specific configuration of the receptive field, the use of a stimulus longer than the receptive field, the presence of a series of alternating excitatory and inhibitory zones in the receptive field, and also of end inhibitory zones on the narrow ends of the field. The unequal change in zones of the receptive fields in time explains the appearance of double orientation tuning in individual fragments of the spike trace. The functional role of double, "cross-wise" tuning in some primary visual cortical neurons and their role in the detection of the features of visual patterns are discussed.  相似文献   

12.
The receptive field organization of cortical units has been studied in experiments with testing by moving and stationary light spots. The size of the receptive fields varied from 3 degrees to 10 degrees. Receptive fields which were tested by a stationary light spot exhibited various types of organization. Some of the neurons produced extensive excitatory on- and off-responses to stimulation by a light spot. Neuronal excitation evoked by light decreased if the stimulus was near the field boundary. Some of the neurons produced either on- or off-responses in any point of the receptive field. A small part of neurons had receptive fields with on- and off-reactions in the center, and either on- or off-responses at the peripheral zones. Most of the neurons exhibited specialization with respect to high-speed motion.  相似文献   

13.
Experiments on cats anesthetized with pentobarbital showed that, depending on the intensity and frequency of acoustic stimulation, neurons in auditory area AI give responses of EPSP, EPSP-spike-IPSP, EPSP-IPSP, and IPSP type. Presentation of a tone of characteristic or near-characteristic frequency and above-threshold intensity, and also electrical stimulation of nerve fibers of the spiral ganglion, innervating the central zone of the receptive field of the neuron, evoke in most cases a response of EPSP-spike-IPSP type. Tone differing considerably in frequency from the characteristic, and electrical stimulation of peripheral zones of the receptive field, evoked responses of EPSP-IPSP or IPSP type. The range of frequencies of tones to which, at threshold intensity, an action potential is generated by the neuron is considerably narrower than the range of frequencies of tones evoking an EPSP and IPSP. Above the intensity of tone threshold IPSP is an invariable component of the response of most neurons in area AI. The appearance of an IPSP in the neuron is accompanied by depression of spontaneous activity and the neuronal response to testing stimulation. Two types of IPSP were distinguished: One type is a component of the EPSP-spike-IPSP response and arises during excitation of auditory receptors located in the central part of the receptive field of the neuron, the other arises during excitation of receptors located at the periphery of the field, and which project to neurons with other characteristic frequencies. The former arise after spike excitation of the neuron, the latter after EPSP or primarily.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 123–131, January–February, 1984.  相似文献   

14.
The position of on- and off-discharge centers in class 1 and 3 receptive fields of the frog retina was determined with the aid of moving bars of different lengths. On- and off-centers of receptive fields of the first group coincide, those of the second are spatially separate, and in fields of the 3rd group the discharge center of one contrast sign occupies the central position and discharge centers of the opposite sign are located at the periphery, to its right and left. Receptive fields of the frog retina thus have features which approximate them to the concentric receptive fields of geniculate neurons and the fields of the cat visual cortex. Asymmetry in the responses was found: during movement in opposite directions the distance between the discharge centers changed, during movement to one side only one of the peripheral centers was revealed, whereas during movement to the other side the second center was revealed on the opposite side of the receptive field. This asymmetry of spatiotemporal relations in the receptive fields is similar to that found in the fields of cortical neurons and is connected with their directional properties.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii State University, Gor'kii. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 75–85, January–February, 1980.  相似文献   

15.
The responses of the cortical secondary auditory area (AII) to the non-acoustic stimuli (electrical stimulation of the skin in the vibrissae area and light flash) and their combination with acoustic stimulation (sound click or tone) were studied in experiments on cats anesthetized by kalipsol using extra- and intracellular recording. Of the total number of neurons, 69% of the units generating spike responses to the acoustic stimulation responded to the non-acoustic stimulation too. The responses to the modal-nonspecific stimulation, as a rule, were weak and variable; they were mostly represented by a tonic change in the neuronal discharge frequency. The nonspecific stimulation evoked primary excitatory and inhibitory postsynaptic potentials in 77% and 20% of the examined neurons, respectively. We found that synaptic effects of the nonspecific and specific stimulations interact with each other, ensuring considerable modulation of the latter (mostly a significant facilitation resulting from the EPSP summation and suppression of an inhibitory component of the response to acoustic stimulation). Possible participation of the midbrain reticular formation in the transmission of the modal-nonspecific influences to the cortical neurons is considered; stimulation of this structure evoked responses similar to those evoked by the modal-nonspecific sensory stimuli.Neirofiziologiya/Neurophhysiology, Vol. 26, No. 5, pp. 356–364, September–October, 1994.  相似文献   

16.
Neuronal organization in the Clare-Bishop cortical association area was studied by consecutive vertical penetration of an electrode and analysis of unit responses to photic stimulation during each penetration. Activity of one or two neurons was recorded during 131 penetrations, and activity of over 3 neurons responding to photic stimulation (visually driven) during 55 penetrations. In 8 of the 55 penetrations all neurons discovered in each had identical characteristics; this type of organization corresponded most of all to the columnar organization of the cortical neurons. In 24 penetrations the neurons were arranged in groups: two or three neurons of one type intermingled with neurons of other types. In 18 penetrations considerable overlapping of the receptive fields of neurons in the same column was observed. A chaotic distribution of neurons with different characteristics was found in 5 penetrations. It is suggested that the organization of neurons in the Clare-Bishop area in columns as functional units of cortical structure is not the principal type of their organization.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 297–302, July–August, 1979.  相似文献   

17.
The responses of the rabbit's visual cortical neurons to paired and rhythmic punctiform stimulation of their receptive fields were compared with responses to diffuse photic stimuli and the electric stimulation of the optic nerve. Diffuse photic and electric stimuli evoke a short-lasting initial activation of a neuron, followed by an inhibitory phase, during which the response to repetitive stimulation is suppressed. By contrast, localized stimulation of the neuron's receptive field with a spot of light produces an intensive and longer-lasting activation which is not followed by profound inhibition. Fusion of the responses to paired and rhythmic localized stimuli is therefore possible when the intervals between stimuli are brief enough. Rhythmic stimulation is capable of evoking sustained activation of a neuron during the entire duration of light flicker. During stimulation of a single point of the receptive field such prolonged activation can take place only within a limited range of stimulation frequencies (up to 15/sec), while higher frequencies evoke responses to the onset and offset of sequences of light flashes only. If, however, rhythmic stimuli alternate between the various points of a receptive field, prolonged neuronal activation is observed with any frequency of stimulation.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 252–259, May–June, 1971.  相似文献   

18.
Responses of pyramidal tract neurons and corticorubral and unidentified neurons in the pericruciate area of the cortex to electrical stimulation in the posterior, tuberal, and anterior zones of the lateral hypothalamus and also to electrodermal stimulation of all four limbs were studied in cats anesthetized with chloralose. The proportion of pyramidal tract, corticorubral, and unidentified neurons which responded to hypothalamic stimulation was 73.3, 55.7, and 79.1% respectively. Data on the possibility of monosynaptic activation of some pyramidal tract neurons and unidentified cells were obtained. The presence of less stable and longer-latency responses of corticorubral neurons indicated the absence of a monosynaptic pathway for realization of ascending hypothalamic influences on neurons of the cortical extrapyramidal system. Some cortical neurons responded to stimulation of more than one zone of the hypothalamus. Pyramidal tract neurons and corticorubral neurons with axon collaterals running into the region of the hypothalamus were discovered for the first time. It was shown that most neurons of the pericruciate area of the cortex to which the ascending influence of the hypothalamus is directed have a large bilateral receptive field and respond to electrodermal stimulation of several limbs.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 298–306, May–June, 1982.  相似文献   

19.
The spatial resolution of simple cells in cat visual cortex was measured by stimulation with pairs of 6 wide parallel light bars of various spacings. These double lines were moved across the receptive field and were taken as resolved if there was a 10% deflection between the double peak responses of cells. As a control, recordings were also made from several geniculate fibers. The smallest bar separations resolved by simple cells were larger than those which have been found for cells of the lateral geniculate nucleus (LGN), although the smallest cortical receptive field centers were as small as those of LGN-cells. The correlation between optimal resolving power of a cell and the width of its excitatory receptive field was much weaker in cortical simple cells than in LGN cells. In contrast to the LGN, the double line responses of most simple cells differ markedly from an additive superposition of two single line responses spaced according to the actual interline distance. As possible mechanisms underlying these nonlinearities three different connectivity schemes were investigated. Two of these models were based on receptive field concepts; the third one used intracortical circuits. Only the latter model could explain all the nonlinear effects seen in the neurophysiological experiments.  相似文献   

20.
In neurons of the extrastriate area 21a of the cat cortex, we examined the mode of initiation and peculiarities of inhibitory components in responses of these units to visual stimulation. About 31% of the studied neurons generated complex responses to mobile visual stimuli; the parameters of inhibitory components in these responses (location and duration) were different and depended on the contrast, dimension, and shape of the visual stimuli presented. We compared in detail the stationary spatial organization of receptive fields (RFs) and parameters of neuronal responses to presentation of moving stimuli in order to estimate the correlation between static and dynamic characteristics of the activity generated by the studied neurons. Our experiments showed that in most cases the neurons possessing identical homogeneous static characteristics of the RFs with off, on-off, and on responses could demonstrate quite different patterns of responses to moving stimuli, which differed from each other both in localization of inhibitory zones and discharge centers within the RFs and in time parameters of the components of these responses. The obtained data allow us to hypothesize that the dynamic characteristics of visually sensitive neurons in the extrastriate associative cortical regions are formed due to complex processes of spatial interaction between their “classic” RFs and the surrounding visual space. Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 119–129, March–April, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号