首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

2.
Effects of diffusion and upwelling on the formation of red tides   总被引:4,自引:0,他引:4  
In this paper, records on the timing and location of specificred tides monitored once or twice a week in Mikawa Bay, Japan,are related to horizontal and vertical mixing rates determinedfrom a numerical model. Horizontal (Kh) and vertical (Kz) diffusioncoefficients, and upwelling velocities, were estimated usinga box model analysis. In the wind-mixed period and in the upperlayer during the stratified period, Kh was estimated to be ofthe order of 102 m2 s–1. During the stratified period,Kz was estimated to be of the order of 10–5 m2 s–1.The upwelling velocity was calculated to be in the range 0.35–5.1m day–1 with an average of 1.5 m day–1. Comparisonbetween the literature values of the specific growth rate (µ)of the red tide-forming diatoms and calculated Kh values duringthe red tides show that diatoms which have a low µ cannotform red tides in a strongly diffusive environment, while specieshaving a high µ can form red tides even in a strong diffusiveenvironment. On the other hand, no clear relationship was foundbetween µ of the flagellate group and Kh, although theflagellate group formed red tides even in severe diffusive conditions.From the comparison between the literature values of sinkingrate and swimming speed and the physical parameters associatedwith vertical processes, it was concluded that flagellates willform red tides, even in severe diffusive conditions, by usingtheir swimming ability, while diatoms form red tides by theirhigh growth rates with the aid of vertical diffusion and theupwelling movement of water.  相似文献   

3.
Phytoplankton biomass, primary production rates and inorganicnutrients were measured in the uppermost layer of the ice-edgeregion and in open water and compared with environmental factorsduring a three-week cruise in September – October 1979.Biomass and production values were low (maximum 2.2 µgchl a l–1, 2.5 mg C m–3 h–1). A post-bloomcommunity of diatoms, consisting mainly of representatives ofChaetoceros, Leptocylindrus, Nitzschia and Thalassiosira, waspredominant. Concentrations of phosphate were quite low (maximum0.55 µM I–1). Nitrate and silicate ranged from nomeasurable quantities to 5.7 µM l–1 and 3.8 µMl–1, respectively. The possibility of light and nutrientlimitation on phytoplankton growth is discussed.  相似文献   

4.
Using well plates of Phaeocystis pouchetii colonies isolatedfrom experimental mesocosms in western Norway, increases incolony size and division were documented. Median longest lineardimensions increased 0–7 µm h–1; literaturePhaeocystis globosa values are 0.9–4.7 µm h–1.Ten to twelve percent of colonies divided at rates of 0.21–0.28divisions day–1. Daughter colonies were 100 µm smallerthan mother colonies. Colonies delayed 3.5–4.9 days tofirst division, compared with literature values of 4–5days for P. globosa. This study provides the first experimentalevidence for colony division of wild P. pouchetii.  相似文献   

5.
Growth and feeding rates of a laboratory-reared small thecateheterotrophic dinoflagellate, Protoperidinium hirobis Abè,grown on the diatom Leptocylindrus danicus, were measured inbatch cultures. Ingestion rates were determined directly bythe enumeration of empty diatom frustules produced by dinoflagellatefeeding. Both growth and feeding rates saturated at diatom concentrationsof {small tilde} 104 cells ml–1, and reached maximum valuesof 1.7 divisions day–1 and 23 diatoms grazer–1 day–1,respectively. This rate of cell division is notably high comparedto photosynthetic dinoflagellates, which seldom grow fasterthan 1 division day–1. A maximal clearance rate of 0.5µl h–1 was measured. Mean cell size varied proportionallywith food abundance, with food-saturated cells having doublethe mean volume of food-depleted cells. Tuning of cell divisionand grazing rate patterns were also examined; while mitosisoccurred chiefly during the dark period, no diel variationsin feeding rate were detected. These rates represent the firstdirect growth and ingestion measurements to be made for a thecateheterotrophic dinoflagellate. They serve to underscore one functionthese dinoflagellates perform within the microzooplanktonicfood web: that of transforming large diatoms into particlesmore easily ingested by microzooplankters.  相似文献   

6.
The heterotrophic dinoflagellate Noctiluca scintillans has anegligible swimming ability and feeds predominantly on immobileprey. How, then, does it encounter prey? Noctiluca scintillansis positively buoyant and, therefore, we hypothesized that itintercepts prey particles during ascent and/or that microscaleshear brings it into contact with prey. Noctiluca scintillanshas a specific carbon content 1–2 orders of magnitudeless than that typical for protists and, thus, an inflated volume.It also has a density slightly less than that of the ambientwater and therefore ascends at high velocities (-1 m h–1).In stagnant water, clearance rates of latex spheres (5–80µm) increased approximately with prey particle size squared.This scaling is consistent with N.scintillans being an interceptionfeeder. However, absolute clearance rates were substantiallylower than those predicted by modeling N.scintillans both asa spherical and as a cylindrical collector. The latter modelassumes that prey particles are collected on the string of mucusthat may form at the tip of the tentacle. Feeding, growth andprey selection experiments all demonstrated that diatoms arecleared at substantially higher rates than latex beads and otherphytoplankters, particularly dinoflagellates. We propose thatdiatoms stick more efficiently than latex beads to the mucusof N.scintillans and that dinoflagellates reduce fatal contactbehaviorally. We conclude that N.scintillans is an interceptionfeeder and that the high ascent velocity accounts for encounterswith prey. However, the flow field around the cell-mucus complexis too complicated to be described accurately by simple geometricmodels. Fluid shear (0.7–1.8 s–1 had a negativeimpact on feeding rates, which were much less than predictedby models. Noctiluca scintillans can survive starvation forlong periods (>3 weeks), it can grow at low concentrationsof prey (-15 µg C l–1), but growth saturates onlyat very high prey concentrations of 500–1000 µgC l–1 or more. We demonstrate how the functional biologyof N.scintillans is consistent with its spatial and seasonaldistribution, which is characterized by persistence in the plankton,blooms in association with high concentrations of diatoms, andsurface accumulation during quiescent periods or exponentialdecline in abundance with depth during periods of turbulentmixing.  相似文献   

7.
Pyrosomas are the large group of pelagic tunicates whose trophicrole in pelagic communities has not yet been sufficiently studied.We ran across a local area of high concentration of the mostwidespread and commonest species of pyrosomas, Pyrosoma atlanticum,450 miles off the Congo river mouth. The following was estimated:gut pigment content, defecation rate, organic carbon and pigmentcontent of fecal pellets, and sinking rate. Based on these dataand the measured number of pyrosomas colonies the grazing impacton phytoplankton and the fecal pellet flux were calculated.During the night swarms of 50–65 mm P.atlanticum removed53% of phytoplankton standing stock in the 0–10 m layer;sparsely distributed pyrosomas consumed only 4%. The grazingimpact in the 0–50 m layer was only 12.5 and <1% respectively.The fecal pellet flux resulting from nocturnal feeding of P.atlanticumwhile swarming made up 1.4–1.6 x 106 pellets m–210 h–1 or 305–1035 mg C m–2 10 h–1 and1.4 x 105 pellets m–2 10 h–1 or 87.4 mg C m–210 h–1 while non-swarming. Incubation experiments showedthe rapid degradation of fecal pellets at 23°C: the lossof pigment and carbon content was {small tilde}60–70%after 45 h. We believe that given the sinking rate of 70 m day–1the main part of fecal material does not leave the upper watercolumn and is retained in the trophic web of the epipelagiclayer.  相似文献   

8.
The investigation of successive steps involved in the infectionprocess of the marine diatoms Coscinodiscus granii and Coscuwdiscuswailesii by the host-specific parasitoid nanoflagellate (PNF)Pirsonia diadenw showed that flagellates reacted chemokJinokineticallywith changes of swimming pattern to the presence of a host diatom.Chemosensory stimulation appeared to induce readiness for infection,whereas attachment and penetration of the diatom cell wall wasinduced by a mechanosensory response to morphological featureson the diatom frustules. The mean swimming speed of P.diademaflagellates decreased during their infective lifetime of 3 daysfrom an average of 78 µm s–1 to 51 µm s–1while the frequency of small loops in the swimming pattern increasedfrom 0.8 to 6.3 loops min–1. At high Cgranii densities,an epidemic was delayed. It is suggested that this could becaused by overlapping gradients of extracellular material releasedby the diatoms which impaired the sensing of spatial gradientsby PNF and, therefore, the location of hosts.  相似文献   

9.
The vitamin B requirement of Phaeocystis globosa (Prymnesiophyceae)   总被引:1,自引:0,他引:1  
In batch cultures of flagellates and non-flagellate cells ofPhaeocystis globosa, the biomass yield was significantly enhancedby the addition of a mixture of the vitamins thiamine (B1),cyanocobalamin (B12) and biotin (H). A bioassay with B1 andB12 using the non-flagellate cells of P.globosa showed thatthis prymnesiophyte is a B1 auxotroph. The bioassay also indicateda significant difference in growth rate between culture mediumwith 10 nmol l–1 B1 (µ = 0.80 day–1) and culturemedium with 10 nmol l–1 B12 (µ = 0.52 day–1).These findings are discussed in relation to the hypothesis thatcentric diatoms, through vitamin B1 excretion or B12 depletion,initiate Phaeocystis blooms. It is concluded, however, thatan alternative hypothesis, that diatoms provide a solid substratefor colony initiation, has more experimental support.  相似文献   

10.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

11.
Carbon dynamics in the 'grazing food chain' of a subtropical lake   总被引:1,自引:0,他引:1  
Studies were conducted over a 13 month period at four pelagicsites in eutrophic Lake Okeechobee, Florida (USA), in orderto quantify carbon (C) uptake rates by size-fractionated phytoplankton,and subsequent transfers of C to zooplankton. This was accomplishedusing laboratory 14C tracer methods and natural plankton assemblages.The annual biomass of picoplankton (<2 µm), nanoplankton(2–20 µm) and microplankton (<20 µm averaged60, 389 and 100 µg C 1–1 respectively, while correspondingrates of C uptake averaged 7, 51 and 13 µg C1–1h–1. The biomass of microzooplankton (40–200 µm)and macrozooplankton (<200 µm averaged 18 and 60 µgC 1–1, respectively, while C uptake rates by these herbivoregroups averaged 2 and 3 µg C 1–1 h–1. Therewere no strong seasonal patterns in any of the plankton metrics.The ratio of zooplankton to phytoplankton C uptake averaged7% over the course of the study. This low value is typical ofthat observed in eutrophic temperate lakes with small zooplanktonand large inedible phytoplankton, and indicates ineffectiveC transfer in the grazing food chain. On a single occasion,there was a high density (<40 1–1) of Daphnia lumholrzii,a large-bodied exotic cladoceran. At that time, zooplanktoncommunity C uptake was <20 µg C 1–1 h–1and the ratio of zooplankton to phytoplankton C uptake was near30%. If D.lumholrzii proliferates in Lake Okeechobee and theother Florida lakes where it has recently been observed, itmay substantially alter planktonic C dynamics.  相似文献   

12.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

13.
Grazing and ingestion rates of laboratory-born Thalia democraticaaggregates and Dolioletta gegenbauri gonozooids, phorozooidsand oozooids were determined while fed Isochrysis galbana (4–5µm diameter) alone or in combination with Peridinium trochoideum(16–18 µm diameter) at concentrations of 0.15–0.70mm3 x 1–1. Grazing rates (ml x zooid–1 x 24 h –1)ranged from 10 to 355, and at zooid weights greater than 5 µgcarbon were in order oozooid > gonozooid > aggregate.Grazing rates increased exponentially with increasing zooidweight. Weight-specific grazing rates (ml x µgC–1x 24 h–1) were independent of the four-fold initial foodconcentration. Mean weight-specific grazing rates increasedlinearly with increasing zooid weight for the aggregates andoozooids, but gonozooid mean rates were independent of zooidweight. Aggregate and gonozooid ingestion rates (106 µm3x zooid–1 x 24 h–1) ranged from 4 to 134 while oozooidrates ranged from 3 to 67. All ingestion rates were independentof the initial food concentration but increased linearly withincreasing zooid weight at similar rates. All mean weight-specificingestion rates (ml x µgC–1 x 24 h–1) wereindependent of zooid weight. The mean aggregate daily ration(µgC ingested x µg body C–1) was 59% and themean doliolid ration was 132%. Field studies indicate that normalconcentrations of D. gegenbauri in the Georgia Bight clear theirresident water volume (1 m3) in about 4 months, but that highlyconcentrated, swarm populations which occur along thermohalinefronts clear their resident water volume in less than 1 day. 1Current address: MacLaren Plansearch Ltd., P.O.Box 13250, sta.A.,St.John's, Nfld. A1B 4A5  相似文献   

14.
The objective of this study was to quantify the functional responsein feeding rate in the various developmental stages of Calanusfinmarchicus to different concentrations of the diatoms Thalassiosiranordenskioeldii and Porosira glacialis, and the haptophyseanPhaeocystis pouchetii. Grazing of copepodite stage I–VC.finmarchicus was measured using two different approaches.Feeding rates were obtained from either incubation experiments,estimating the rate of removal of particles from suspension,or by quantifying the turnover rate of the plant pigments inthe gut. Clearance as a function of algal concentration (1–30µg plant pigment 1–1) was described in juvenilestages of C.finmarchicus fed the diatoms T.nordenskioeldii [20µm equivalent spherical diameter (ESD)], P.glacialis (40µm ESD), and two size categories (30–100 µmand >100 µm ESD) of the gelatinous alga P.pouchetii.When the copepodite stages were fed T.nordenskioeldii, the gutcontent of plant pigments was in general higher than when fedP.glacialis. Rates obtained were variable when the same copepoditestages were offered the two size categories of P.pouchetii,but within the same order of magnitude as those obtained forthe larger diatom. At unialgal diets, diatoms were more readilyconsumed than the larger size fraction among colonies of P.pouchetiiby copepodite stage I–III C.finmarchicus. But given anappropriate prey size, C.finmarchicus grazed both diatoms andcolonies of gelatinous algae at equal rates. A linear relationshipbetween gut content and food concentrations <10 µgchlorophyll 1–1 was found. This indicates that the ingestionrate in C.finmarchicus is directly proportional to the ambientfood concentration during the most productive period in Mayand June in high latitudes irrespective of algal species present. 1Present address: Marine Biological Laboratory, University ofCopenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark 2Present address: Greater Copenhagen Council, Gl. KøgeLandevej 1–3, DK-2550 Valby, Denmark  相似文献   

15.
Food size selectivity was examined in Artemia franciscana metanaupliiat three different developmental stages. Clearance rates weredetermined in short-term experiments either by measuring thedecrease in concentration of live particles and plastic beads,or by measuring the radioactivity accumulated in animals thatgrazed 14C-labelled live particles. The maximum clearance rateofA.franciscana metanauplii increased during development andwas measured at 50–63 µl ind.–1 h–1,254 µl ind.–1 h–1 and 1.48–2.10 ml ind.–1h–1 in 2-, 4- and 7-day-old metanauplii, respectively.A preference for particles with a diameter of 4–8 µmwas observed at all three developmental stages. The abilityof A.franciscana metanauplii to graze bacterial particles wasalso demonstrated, although the efficiency in grazing such smallparticles was low compared to microalgae (28, 20 and 9% of themaximum clearance rate in 2-, 4- and 7-day-old metanauplii,respectively). Electron microscopy showed that the inter-setulardistance in antennae and thoracopods was 0.20 ± 0.07,0.16 ± 0.05 and 0.18 ± 0.04 µm in 2-, 4-and 7-day-old metanauplii, respectively, and accordingly independentof stage.  相似文献   

16.
Autotrophic picoplankton populations in Lake Kinneret are composedof picocyanobacteria and picoeukaryotes. Overall, the ratesof photosynthetic carbon fixed by autotrophic picoplankton duringthis study were low (0.01–1.5 mg Cm–3 h–1).The highest chlorophyll photosynthetic activity of the <3µm cell-size fraction was found in spring, when picoeukaryotespredominated and in addition small nanoplankton passed throughthe filters. The maximum cell-specific photosynthetic rate ofcarbon fixation by picocyanobacteria and picoeukaryotes was2.5 and 63 fg C cell–1 h–1, respectively. The highestspecific carbon fixation rate of autotrophic picoplankton was11 µg C µg–1 Chl h–1 The proportionalcontribution of autotrophic picoplankton to total photosynthesisusually increased with depth. Picocyanobacteria collected fromthe dark, anaerobic hypolimnion were viable and capable of activephotosynthesis when incubated at water depths within the euphoticzone. Maximum rates of photosynthesis (Pmax) for picocyanobacteriaranged from 5.4 to 31.4 fg C cell–1 h–1 with thehighest values in hypolimnetic samples exposed to irradiance.Photosynthetic efficiency (  相似文献   

17.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

18.
We tested the hypothesis that the growth rate of Anabaena circinalis,under diurnally stratified conditions, would increase as flotationvelocity increased owing to higher light availability. An insitu experiment compared the growth of diurnally stratifiedpopulations of A. circinalis with flotation velocities of 0.5and 1.0 m h–1, with neutrally buoyant populations thatwere exposed to either mixed or persistently stratified conditions.The experiment was conducted in the turbid lower Murray Riverin South Australia (vertical attenuation coefficient = 4.52± 0.36 m–1). To represent the mixing patterns,A. circinalis was contained in diffusion chambers that weremoved to different positions in the water column throughoutthe day. Diurnal populations with flotation velocities of 1.0and 0.5 m h–1 grew at 0.23 ± 0.01 and 0.15 ±0.01 day–1, respectively. Mixed populations grew at 0.19± 0.01 day–1, whereas persistently stratified populationsgrew at 0.43 ± 0.01 day–1. Results were used toextend a model that predicts growth of A. circinalis when exposedto the different mixing patterns. The model showed that bloomsare unlikely to be formed when the period of diurnal stratificationis <1 week, regardless of flotation velocity. When the diurnallystratified period is >1 week, flotation velocity is importantand a bloom may form depending on values assigned to the growthperiod and maximum mixed depth (Zm).  相似文献   

19.
During the spring of 1994, we determined the factors responsiblefor the decline of the seasonal diatom bloom in the Gullmarfjord, on the west coast of Sweden. Four species constituted>75% of the biomass—Detonula confervacea, Chaetocerosdiadema, Skeletonema costatum and Thalassiosira nordenskioeldii—reachingconcentrations of 4900, 350, 8200 and 270 cells ml–1,respectively. Growth of phytoplankton was exponential (growthrate = 0.12 day–1) from 3 to 21 March, after which a galewith winds >15 m s–1 caused massive aggregation. Amaximum of 130 p.p.m. (v/v) of marine snow aggregates was observedby in situ video at the peak of the bloom. Critical concentrations(Jackson, Deep-Sea Res., 37, 1197–1211, 1990) were similarto observed showing that coagulation theory could explain thesudden decline of the bloom. The heterotrophic dinoflagellateGyrodinium cf. spirale increased exponentially after the peakof the bloom with maximum (temperature-adjusted) growth rates.After the rapid aggregation and sedimentation of the bloom,they were able to control any further growth of diatoms. Nitrateand silicate were never depleted, but phosphate may have beenlimiting by the end of the study period. We conclude that massaggregation during a gale marked the end of the bloom, and thatintense grazing by heterotrophic dinoflagellates prevented anysubsequent increase of diatoms.  相似文献   

20.
The influence of turbulence on the incidence of infection ofthe diatom Coscinodiscus granii by the parasitoid nanoflagellatePirsonia diadema was investigated experimentally with two initialhost densities. Independently of the initial diatom densitiesof 7 and 44 cells ml–1, under calm conditions both diatomsand parasitoids became extinct within 6–9 days. Turbulence,however, led to the survival of diatoms at a reduced densityof 0.1–2 cells ml–1 for >30 days. A population-dynamicmodel is formulated that takes into account the non-homogeneousdistribution of infecting flagellates among host diatoms. Applicationof the results to parasitoid–diatom interactions in naturalwaters suggests that, under turbulent conditions, endemic infectionsmay effectively prevent the mass development of host diatoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号