首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspects related to hatching, life time, mortality, feeding behaviour and fecundity for each stage of Triatoma pallidipennis life-cycle were evaluated. The hatching rate observed for 200 eggs was 60% and the average time of hatching was 18 days. Eighty nymphs (N) (40%) completed the cycle and the average time from NI to adult was 168. 7+/-11.7days. The average span in days for each stage was 18.0 for NI, 18.5 for NII, 30.0 for NIII, 35.7 for NIV and 50.1 for NV. The number of bloodmeals at each nymphal stage varied from 1 to 5. The mortality rate was 9.17 for NI, 5.5 for NII, 6.8 for NIII 4.17 for NIV and 13.04 for NV nymphs. The average number of eggs laid per female in a 9-month period was 498.6. The survival rates of adults were 357+/-217.9 and 262.53+/-167.7 for males and females respectively.  相似文献   

2.
Our objective was to investigate sympathetic and sensory nerve fibers in synovial tissue in rheumatoid arthritis (RA) and osteoarthritis (OA) in relation to histological inflammation and synovial cytokine and norepinephrine (NE) secretion. Immunohistochemistry was used to detect nerve fibers and inflammatory parameters. A superfusion technique of synovial tissue pieces was used to investigate cytokine and NE secretion. In RA, we detected 0.2 +/- 0.04 tyrosine hydroxylase-positive (TH-positive=sympathetic) nerve fibers/mm2 as compared to 4.4 +/- 0. 8 nerve fibers/mm2 in OA (P<0.001). In RA, there was a negative correlation between the number of TH-positive nerve fibers and inflammation index (RRank=-0.705, P=0.002) and synovial IL-6 secretion (RRank=-0.630, P=0.009), which was not found in OA. Substance P-positive (=sensory) nerve fibers were increased in RA as compared to OA (3.5+/-0.2 vs. 2.3+/-0.3/mm2, P=0.009). Despite lower numbers of sympathetic nerve fibers in RA than in OA, NE release was similar at baseline (RA vs. OA: 152+/-36 vs. 106+/-21 pg/ml, n.s.). Basal synovial NE secretions correlate with the number of TH-positive CD 163+ synovial macrophages (RA: RRank=0.622, P=0.031; OA: RRank=0.299, n.s.), and synovial macrophages have been shown to produce NE in vitro. Whereas sympathetic innervation is reduced, sensory innervation is increased in the synovium from patients with longstanding RA when compared to the synovium from OA patients. The differential patterns of innervation are dependent on the severity of the inflammation. However, NE secretion from the synovial tissue is maintained by synovial macrophages. This demonstrates a loss of the influence of the sympathetic nervous system on the inflammation, accompanied by an up-regulation of the sensory inputs into the joint, which may contribute to the maintenance of the disease.  相似文献   

3.
The number and the distribution of fiber size in the medial (MAN) and posterior (PAN) articular nerves of the mouse knee joint were studied by electron microscopy. The MAN contained 75 +/- 28 nerve fibers consisting of 63 +/- 24 unmyelinated and 12 +/- 6 myelinated fibers. The PAN was composed of 195 +/- 50 nerve fibers, namely 129 +/- 28 unmyelinated and 66 +/- 24 myelinated fibers. A skewed unimodal distribution of the unmyelinated nerve fiber diameters was seen in both nerves ranging from 0.1 to 1.2 microm with a maximum between 0.3 and 0.6 microm. The myelinated nerve fibers in the MAN ranged from 1 to 8 microm with a peak between 2 and 5 microm. In the PAN, their diameters ranged from 1 to 12 microm with a clearly visible peak at 4-5 microm and a plateau at 8-9 microm that may represent a second maximum. These data show that the knee joint innervation of the mouse is comparable to those of the cat and rat concerning the types of nerve fibers and the composition of the two nerves. However, in relation to the much smaller area of tissue to be innervated the total number of primary afferents is considerable smaller in the mouse.  相似文献   

4.
Neuromuscular activation is a primary determinant of metabolic demand and oxygen transport. The m. retractor and m. epitrochlearis are model systems for studying metabolic control and oxygen transport; however, the organization of muscle fibers and motor nerves in these muscles is unknown. We tested whether the topology of motor innervation was related to the morphology of muscle fibers in m. retractor and m. epitrochlearis of male hamsters ( approximately 100 g). Respective muscles averaged 47 and 12 mm in length 100 and 35 mg in mass. Staining for acetylcholinesterase revealed neuromuscular junctions arranged in clusters throughout m. retractor and as a central band across m. epitrochlearis, suggesting differences in fiber morphology. For both muscles, complete cross-sections contained approximately 1,700 fibers. Fiber cross-sectional areas were distributed nearly normal in m. epitrochlearis (mean = 1,559 +/- 17 microm(2)) and skewed left (P < 0.05) in m. retractor (mean = 973 +/- 15 microm(2)). Single fiber length (Lf) spanned muscle length (Lm) in m. epitrochlearis, while fibers tapered to terminate within m. retractor (Lf/Lm = 0.43 +/- 0. 02). With myelin staining, a single branch of ulnar nerve projected axons across the midregion of m. epitrochlearis. For m. retractor, the spinal accessory nerve branched to give rise to proximal and distal regions of innervation, with intermingling of axons between nerve branches. Nerve bundle cross-sections stained for acetylcholinesterase indicate that each motor axon projects to an average of 65 muscle fibers in m. epitrochlearis and 100 in m. retractor. Differences in fiber morphology, innervation topology, and neuromuscular organization may contribute to the heterogeneity of metabolic demand and oxygen supply in skeletal muscle.  相似文献   

5.
Very little is known about esophageal innervation in the hamster. In the present study, we used protein gene product 9.5 (PGP 9.5) to determine immunohistochemically the architectural features of the enteric nervous system in the hamster esophagus. The myenteric plexus consisted of a loose and irregular network of ganglia and interganglionic nerve bundles. The density of the neurons in the myenteric plexus was relatively low (479 +/- 75/cm(2), n = 5), with a preferentially higher density in the upper cervical portion than other parts of the esophagus. Regional differences in the number of PGP 9.5-positive neurons and ganglia were observed. PGP 9.5-immunoreactive fibers in the ganglia often branched, giving rise to expanding nerve endings of laminar morphology resembling intraganglionic laminar endings described in rats and cats. Fine varicose fibers originating from the secondary plexus were occasionally observed near the motor endplates, suggested a dual innervation of the striated muscle. The submucosal plexus was free from ganglionated plexus. A regional difference in the submucosal nervous network was observed. The number of motor endplates in the inner muscle layer was higher than that in the outer muscle layer.  相似文献   

6.
目的:应用生物胞素法观察罗非鱼动眼神经的形态分布。方法:本实验用罗非鱼,10只(性别不限),体长12.16cm,动物浸入140mg/L三卡因间氨苯酸乙脂甲磺酸盐{tricainemethanesulfonate(MS222)}溶液中麻醉,在手术显微镜下暴露动眼神经,通过生物胞素(Biocytin)结晶追踪技术研究定位硬骨鱼类动眼神经的形态分布。结果:①被标记的神经纤维长而粗细不等,排列比较松散,从后外向前内方向行走,逐渐靠近,终于位于中脑腹侧部的动眼神经核细胞,同时可以观察到有些神经纤维交叉到对侧。②神经核细胞呈圆形和卵圆形,大小不一,亦可见神经元的突起,有的突起呈螺旋状连于胞体,有的呈线状连于胞体,形成神经终末及突触联系,并可见到多极神经元,并在神经纤维之中也可以见到少数神经核细胞,但部分标记结构并不太完整,有些标记的神经细胞和神经纤维不是很清楚。结论:鱼类动眼神经纤维在中脑内的走行与其他动物基本一致,动眼神经核位于中脑水管腹侧部。  相似文献   

7.
Morphofunctional restoration of the cut ischemic nerve has been studied after its connection by means of a microsurgical suture. The investigations have been performed on 20 male rats. In 6 months after the operation the average diameter of the regenerating nervous fibers is 5.0-6.5 mcm and, as in an intact nerve they have a wavy course. Myelin decay products and inflammatory infiltrates are revealed in the nerve but sometimes. All the parts of the plantar skin are well reinnervated. Cutaneous epidermis of the sole and the digital pads possesses an extremely rich innervation. Characteristics of M-responses, registered from the m. gastrocnemius, approaches the norm in 2 months after the operation. In 10% of fibers of the regenerating ischiatic nerve impulse activity begins to be registered in 20-30 days after the operation. Gradually the borders of the receptor fields become wider and in 3 months they spread all over the whole sole. In 5-6 months the impulse reaction of the regenerating nerve fibers does not differ from that in non-operated animals. Thus, use of the microsurgical suture results in a successful regeneration of the rat ischemic nerve and in a rather short time. The restorative dynamics of the extremity tissue innervation can be presented as following: at first somatic muscles get innervation and then, as the afferent fibers grow in the periphery, the plantar skin and the skin of the digital pads is the last to get innervation.  相似文献   

8.
9.
We investigated the motor unit organization and precision of reinnervation in the Xenopus pectoralis muscle following different manipulations, including crush or section of the posterior pectoralis nerve, foreign nerve innervation, and crush coupled with activity modulation or block. Most fibers have two neuromuscular junctions, and multielectrode recordings were used to identify the axonal origin of all inputs to both junctions on most or all fibers covering about 25% of the muscle surface. Following simple nerve crush, a highly organized innervation pattern was restored, indistinguishable from the normal pattern, including selective innervation of fibers of similar input resistance (Rin), compact motor unit organization, and high incidence of exclusive innervation of both end plates on each fiber by the same axon (distributed mononeuronal innervation, or a/a pattern). Initial reinnervation was equally precise when nerve conduction in the regenerating nerve was blocked by tetrodotoxin. More distant or repeated nerve crush or nerve section delayed and reduced the precision of reinnervation, but the majority of fibers still received input to both end plates by the same axon, often in combination with others. A foreign nerve, the pectoralis sternalis, which in its own muscle forms only single end plates, showed less precise reinnervation, but still had an incidence of a/a innervation far above chance. These data imply the expression and recognition of remarkably precise chemospecific cues even in mature animals, superimposed on which is a further refinement by synapse elimination, probably based on an activity-dependent process. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
During development, axons of the chorda tympani nerve navigate to fungiform papillae where they penetrate the lingual epithelium, forming a neural bud. It is not known whether or not all chorda tympani axons initially innervate fungiform papillae correctly or if mistakes are made. Using a novel approach, we quantified the accuracy with which gustatory fibers successfully innervate fungiform papillae. Immediately following initial targeting (E14.5), innervation was found to be incredibly accurate: specifically, 94% of the fungiform papillae on the tongue are innervated. A mean of five papillae per tongue were uninnervated at E14.5, and the lingual tongue surface was innervated in 17 places that lack fungiform papillae. To determine if these initial errors in papillae innervation were later refined, innervation accuracy was quantified at E16.5 and E18.5. By E16.5 only two papillae per tongue remained uninnervated. Innervation to inappropriate regions was also removed, but not until later, between E16.5 and E18.5 of development. Therefore, even though gustatory fibers initially innervate fungiform papillae accurately, some errors in targeting do occur that are then refined during later embryonic periods. It is likely that trophic interactions between gustatory neurons and developing taste epithelium allow appropriate connections to be maintained and inappropriate ones to be eliminated.  相似文献   

11.
Summary Monoaminergic nerve fibers were studied in the pineal organ of the monkey, Macaca fuscata, by use of fluorescence and immunohistochemical procedures. Abundant formations of noradrenergic nerve fibers were observed in the pineal organ. They entered the parenchyma in the form of several coarse bundles via the capsule in the distal portion of the organ and spread throughout the organ after branching into smaller units. The density of the autonomic innervation decreased gradually toward the proximal portion of the organ. In the distal portion, numerous nerve fibers formed perivascular plexuses around the blood vessels and some fibers ran as bundles unrelated to the blood vessels in the stroma. Fine varicose fibers and bundles derived from these plexuses penetrated among the pinealocytes. However, only a few intraparenchymal fluorescent fibers were detected in the proximal third of the gland. With the use of serotonin antiserum serotonin-immunoreactive nerve fibers were clearly restricted to the ventroproximal part of the pineal organ. Although the somata of the pinealocytes showed intense immunoreactivity, their processes were not stained. In one exceptional case, clusters of pinealocytes displaying very intense immunoreactivity were found in an area extending from the distal margin of the ventral portion of the pineal stalk to the proximal portion of the pineal organ proper; these cells were bipolar or multipolar and endowed with well-stained processes.  相似文献   

12.
The innervation of the pineal organ was studied in 26 avian species under particular consideration of comparative aspects. A population of nerve cells and their pinealofugal (afferent) fiber systems were stained by means of the acetylcholinesterase method, while catecholamine-containing pinealopetal (efferent) fibers were demonstrated with the use of the glyoxylic acid method. Afferent axons were mainly found in the postero-proximal portion of the organ, and the patterns of their distribution were classified into three groups according to the characteristic densities of the reaction product. The number of acetylcholinesterase-positive neurons in the avian pineal organs examined in this study varied extremely from species to species, ranging from 0 to 362. Catecholamine-containing nerve fibers penetrating the antero-lateral walls of the pineal follicles accompanied blood vessels and were arranged more densely in the distal portion of the organ, in contrast to the distribution of the acetylcholinesterase-positive nerve fibers. Three-dimensional reconstruction of the distributional patterns of both types of neural projections was performed for the pineal organ of every avian species examined. In avian species possessing a relatively conspicuous afferent projection, such as Passeriformes, Nycticorax, and Milvus, terminals of catecholamine-containing nerve fibers were observed exclusively in the interfollicular and perivascular tissues. In Galliformes, which display only few pineal afferents, catecholamine-containing fibers terminate not only in the interfollicular space, but also in the neuroepithelial parenchyma. The regional differences in the innervation in the avian pineal organ suggest that the pinealocytes ranging from more sensory-like to more secretory-like elements are arranged in a mosaic-like pattern.  相似文献   

13.
The present research shows that sensory ganglion cells are located within the oculomotor nerve of monkeys and man. Furthermore, afferent fibers have been found in the IIIrd nerve of all the animals examined (lamb, pig, cat, dog and monkey). These fibers have their perikarya prevalently in the semilunar ganglion. Their pathway could be studied after section of either the trigeminal ophthalmic branch or of the intracranial portion of the IIIrd nerve. Following these operations, degenerating fibers were found entering the brain stem through the oculomotor nerve. In the brain stem, they were traced through the pons and the medulla and were seen to end in the spinal cord, within the subnucleus gelatinosus of the nucleus caudalis trigemini. Their degenerating endings found in the neuropil of the SG Rolandi, represented peripheral axonal endings of the glomeruli, rather than central axonal endings, as was the case after trigeminal rhizotomy. On the basis of these different degenerating patterns, the conclusion can be reached that the perikarya of the afferent fibers located in the semilunar ganglion represent, in reality, a ganglion of the IIIrd nerve.  相似文献   

14.
Summary The ciliary body of the cat was investigated by fluorescence histochemistry and electron microscopy in an attempt to clarify its sympathetic innervation. Subconjunctival doses of 5-hydroxydopamine (5-OHDA) or 6-hydroxydopamine (6-OHDA) were given to establish the precise location of the sympathetic nerve terminals. The distribution of noradrenergic fibers and terminals was shown by fluorescence histochemistry to be sparse in the trabecular meshwork and the anterior portion of the ciliary muscle, but dense in the subepithelial tissue. The small and large dense core vesicles which occur in many nerve endings of the subepithelial tissue adjacent to the pigmented epithelial layer increased in electron density following the administration of 5-OHDA. Many degenerating nerve endings were found in the same region of animals treated with 6-OHDA. In contrast, there were few noradrenergic terminals in the ciliary muscle except for a portion of the smooth muscle which was shown to be dually innervated. The noradrenergic fibers in the subepithelial region and the trabecular meshwork may play an important role in aqueous secretion and outflow.This work was supported in part by a research grant from the Ministry of Education, Japan  相似文献   

15.
The innervation pattern of port-wine stains was investigated using indirect immunohistochemistry with antibodies to protein gene product 9.5 (PGP 9.5), neuron-specific enolase (NSE), calcitonin gene-related peptide (CGRP), and neurofilament (NF). The pathologically dilated vessels in the middle and deep dermis were found to have defective innervation with only single or no nerve fibers in their vicinity, while other structures in the skin showed a normal density of fibers. NSE- and PGP-like immunoreactive (-LI) nerve fibers were observed innervating vessels with a normal morphology and other structures in the skin, such as sweat glands and hair follicles, as free nerve endings and in nerve bundles. The nerve bundles were often seen to pass the ectatic vessels without giving off any branches. CGRP-LI nerve fibers were detected running toward epidermis, whereas no fibers were found around the ectatic vessels. NF-LI fibers were seen innervating normal vessels in dermis, while in relation to the dilated vessels, no or only occasional fibers were observed. The lack of innervation may be of importance for the development of the disease as a result of decreased tonus of the vessels and/or a loss of neuronal trophic factors.  相似文献   

16.
The present study attempts to compile information on the possible physiologic role of the endogenous peptide neurotensin (NT) as a hormone and/or neurotransmitter. The methodological approach is immunohistochemical localization of NT in the entero-endocrine system as well as in the central and peripheral nervous systems. The results found in the three systems are first related to the pharmalogical and physiological findings in the literature. Subsequently their significance is discussed for each organ separately before attempting a final overall interpretation. Briefly, the present study reveals the following essential findings: The occurrence and distribution of NT-IR entero-endocrine cells (N-cells) in different mammals including man, as well as in representative members of all classes of vertebrates and higher invertebrates, are analyzed and evaluated morphometrically. The NT-IR cells in all investigated species are demonstrated to be of the open type. The innervation of paravertebral and prevertebral ganglia by NT-IR fibers is described; at least a portion of these fibers is thought to originate in NT-IR perikarya of the substantia intermedia of the spinal cord. The involvement of these NT-IR fibers in the regulation of systemic blood flow (hypertension) is suggested. The existence of NT-IR innervation of the gastro-intestinal tract is considered to be a general phenomenon. This notion is reaffirmed by phylogenetic investigation of the NT-IR enteric nerves. The pharmacological effects of NT in different portions of the gastro-intestinal tract, reported in the literature are related to the immunohistochemical localization of NT. In light of the present results, some of the effects of NT which were previously considered to be of an endocrine or paracrine nature - such as contraction of the guinea-pig ileum - are interpreted as effects of NT of neuronal origin. The specific NT-IR innervation of target cells in the exocrine pancreas (vascular smooth muscle, acinar cells) is demonstrated, and participation of NT-IR nerve fibers in regulation of the secretion of pancreatic juice is postulated. The innervation of the heart (coronary vasculature, myocardium, conduction system) by NT-IR fibers is demonstrated in various mammals and for the first time also in man. The cardiac NT-IR nerve fibers are thought to be the cytological substrate for different NT effects on heart action (coronary vasoconstriction, positive inotropy and chronotropy) reported in the literature.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary The distribution of nerve fibers displaying neuropeptide Y immunoreactivity in relationship to the catecholaminergic innervation of rat, guinea pig, and rabbit liver was investigated by single- and double-label immunofluorescence methods. In all three species, neuropeptide Y-immunoreactive fibers are prominent in association with the vasculature, biliary pathway, and stromal compartment. The neuropeptide Y innervation of the parenchyma, on the other hand, differs among the three species in term of density. It is quite sparse in the rat and rabbit, particularly in the former species. In the guinea pig liver, numerous single, varicose neuropeptide Y-containing nerve fibers innervate the hepatic parenchyma; often, thin processes surround single hepatocytes and lie close to sinusoids. The immunoreactive pattern of tyrosine hydroxylase, a marker for catecholaminergic neurons and fibers, is comparable to that of neuropeptide Y. Most neuropeptide Y-containing nerve fibers also contain tyrosine hydroxylase immunoreactivity, in all three species, with the exception of the rabbit parenchyma, where a substantial proportion of catecholaminergic fibers lack immunoreactivity for neuropeptide Y. Finally, systemic administration of the sympathetic neurotoxin, 6-hydroxydopamine, in rats and guinea pigs resulted in virtually complete elimination of both neuropeptide Y- and tyrosine hydroxylase-immunoreactive fibers. These findings are consistent with the hypothesis that neuropeptide Y-containing nerve fibers form a subpopulation of the sympathetic innervation of the mammalian liver, which is likely to originate from prevertebral sympathetic ganglia.  相似文献   

18.
Nitric oxide (NO) is generated intracellularly from L-arginine by the action of the enzyme nitric oxide synthase (NOS). The present investigation demonstrates immunoreactivity against NOS and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in nerve cells and fibers of the reproductive system of the female mouse. The density of nerve fibers staining for NOS varied among different genital organs. The ovary and Fallopian tube were devoid of NOS-positive nerves. The uterine horns received sparse innervation by NOS-containing nerve fibers. The most abundant NOergic innervation was found in the uterine cervix and vagina, where the nerve fibers ran parallel to the smooth muscle bundles and beneath the epithelium; they also accompanied intramural blood vessels. The vaginal muscular wall contained single or groups of NOS-reactive nerve cells. Clusters of NOS-containing neurons were located in Frankenhäuser's ganglion at the cervico-vaginal junction. NO may therefore act as a transmitter in the nervous control of the female reproductive tract.  相似文献   

19.
Previous work has established that the central nervous system can modulate the immune response. Direct routes through which this regulation may occur are the sympathetic and sensory innervation of lymphoid organs. We investigated the innervation of canine mesenteric lymph nodes using immunohistochemistry and the expression of binding sites for sensory neuropeptides using quantitative receptor autoradiography. The sympathetic innervation of lymph nodes was examined by immunohistochemical methods using an antiserum directed against tyrosine hydroxylase (TOH), the rate limiting enzyme in catecholamine synthesis. TOH-containing fibers were associated with 90% of the blood vessels (arteries, veins, arterioles and venules) in the hilus, medullary and internodular regions of lymph nodes and in trabeculae with no obvious relationship to blood vessels. The sensory innervation of lymph nodes was investigated using antisera directed against the putative sensory neurotransmitters calcitonin gene-related peptide (CGRP) and substance P (SP). CGRP- and SP-containing fibers were detected in the hilus, the medullary region, and the internodular region of lymph nodes usually in association with arterioles and venules. About 50% of the arterioles and venules exhibited a CGRP innervation and a smaller fraction (5-10%) were innervated by SP-containing fibers. Few if any TOH, CGRP, and SP nerve fibers were detected in the germinal centers of lymph nodes. Using quantitative receptor autoradiography we studied the distribution of receptor binding sites for the sensory neuropeptides CGRP, SP, substance K (SK), vasoactive intestinal peptide (VIP), somatostatin (SOM), and bombesin. Specific CGRP binding sites were expressed throughout lymph nodes by trabeculae, arterioles, venules and 25% of the germinal centers. SP receptor binding sites were localized to arterioles and venules in the T cell regions and 25-30% of the germinal centers. VIP binding sites were localized to the internodular and T cell regions, to medullary cords, and to 10-20% of germinal centers. SK, SOM, and bombesin binding sites were not detected in the lymph nodes, although receptor binding sites for these peptides were detected with high specific/nonspecific binding ratios in other canine peripheral tissues. Taken together with previous results these findings suggest that the sympathetic and sensory innervation of mesenteric lymph nodes appears to be involved with the regulation of their blood and lymph flow. The neuropeptide receptor binding sites in lymph node germinal centers may be expressed by lymphocytes upon activation by antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Female and naupliar Calanus were rarer in winter and springof 1992, an El Niño period, than in 1989. The ratio ofabundances, nauplius III (NIII) female-1 (a composite surrogatefor reproduction and survival), did not differ between yearsand was not consistently correlated with concurrently measuredchlorophyll (a measure of food). Survival from egg to NIII wasnegatively correlated with biomass of macrozooplankton (a measureof predators). Survival from NIV to NVI was less variable thanthat of younger states; it was poorer in winter of 1992 thanin winter of 1989, but did not differ in median magnitude betweenthe two springs, although it was least variable spatially inspring of 1992. Survival of these feeding stages was not correlatedwith chlorophyll. The relative ranty of nauplii was equivalentto a reduction of 30% in this source of food for larval fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号