首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During zebrafish development, the left-right (LR) asymmetric signals are first established around the Kupffer vesicle (KV), a ciliated organ generating directional fluid flow. Then, LR asymmetry is conveyed and stabilized in the lateral plate mesoderm. Although numerous molecules and signaling pathways are involved in controlling LR asymmetry, mechanistic difference and concordance between different organs during LR patterning are poorly understood. Here we show that RA signaling regulates laterality decisions at two stages in zebrafish. Before the 2-somite stage (2So), inhibition of RA signaling leads to randomized visceral laterality through bilateral expression of nodal/spaw in the lateral plate mesoderm, which is mediated by increases in cilia length and defective directional fluid flow in KV. Fgf8 is required for the regulation of cilia length by RA signaling. Blockage of RA signaling before 2So also leads to mild defects of heart laterality, which become much more severe through perturbation of cardiac bmp4 asymmetry when RA signaling is blocked after 2So. At this stage, visceral laterality and the left-sided Nodal remain unaffected. These findings suggest that RA signaling controls visceral laterality through the left-sided Nodal signal before 2So, and regulates heart laterality through cardiac bmp4 mainly after 2So, first identifying sequential control and concordance of visceral and heart laterality.  相似文献   

3.
All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals.  相似文献   

4.
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.  相似文献   

5.
 We have cloned and examined the expression pattern of zebrafish bone morphogenetic protein-4 (BMP4) as a start to evaluating signals which might participate in the fashioning of organ systems in this genetically tractable species. The predicted sequence of the mature zebrafish protein is more than 75% identical to that of other vertebrates and 66% identical to Drosophila decapentaplegic (Dpp). As in other species, BMP4 is expressed ventrally during gastrulation, but the zebrafish is unusual in having an additional dorsal domain of expression. Subsequent BMP4 expression is especially prominent in sensory organs, fin buds, and in the gut, kidney, and heart. In all these sites, it becomes particularly enriched in regions of inductive demarcations. For example, expression initially extends through the entire heart tube but then becomes limited to the boundaries between cardiac chambers (sinus venosus-atrial junction, atrio-ventricular junction, and aortic root) prior to cushion formation. In early pectoral fin development, BMP4 is at first expressed uniformly but then becomes restricted to the mesenchyme subjacent to the apical ectodermal ridge. This suggests that among its roles in development, BMP4 serves as a signal in primordial outgrowth and also as a signal demarcating the borders within organs or structures where subspecializations occur. Received: 13 January 1997 / Accepted: 3 April 1997  相似文献   

6.
The vertebrate brain develops from a bilaterally symmetric neural tube but later displays profound anatomical and functional asymmetries. Despite considerable progress in deciphering mechanisms of visceral organ laterality, the genetic pathways regulating brain asymmetries are unknown. In zebrafish, genes implicated in laterality of the viscera (cyclops/nodal, antivin/lefty and pitx2) are coexpressed on the left side of the embryonic dorsal diencephalon, within a region corresponding to the presumptive epiphysis or pineal organ. Asymmetric gene expression in the brain requires an intact midline and Nodal-related factors. RNA-mediated rescue of mutants defective in Nodal signaling corrects tissue patterning at gastrulation, but fails to restore left-sided gene expression in the diencephalon. Such embryos develop into viable adults with seemingly normal brain morphology. However, the pineal organ, which typically emanates at a left-to-medial site from the dorsal diencephalic roof, becomes displaced in position. Thus, a conserved signaling pathway regulating visceral laterality also underlies an anatomical asymmetry of the zebrafish forebrain.  相似文献   

7.
8.
The epithalamus of zebrafish presents the best-studied case of directional asymmetry in the vertebrate brain. Epithalamic asymmetries are coupled to visceral asymmetry and include left-sided migration of a single midline structure (the parapineal organ) and asymmetric differentiation of paired bilateral nuclei (habenulae). The mechanisms underlying the establishment of epithalamic asymmetry involve the interplay between anti-symmetry and laterality signals to guide asymmetric parapineal migration. This event triggers the amplification of habenular asymmetries and the subsequent organisation of lateralised circuits in the interpeduncular nucleus. This review will summarise our current understanding on these processes and propose a sequential modular organisation of the events controlling the development of asymmetry along the parapineal–habenular–interpeduncular axis.  相似文献   

9.
Nodal and BMP signals are important for establishing left-right (LR) asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.  相似文献   

10.
The vertebrate heart arises during gastrulation as cardiac precursors converge from the lateral plate mesoderm territories toward the embryonic midline and extend rostrally to form bilateral heart fields. G protein-coupled receptors (GPCRs) mediate functions of the nervous and immune systems; however, their roles in gastrulation remain largely unexplored. Here, we show that the zebrafish homologs of the Agtrl1b receptor and its ligand, Apelin, implicated in physiology and angiogenesis, control heart field formation. Zebrafish gastrulae express agtrl1b in the lateral plate mesoderm, while apelin expression is confined to the midline. Reduced or excess Agtrl1b or Apelin function caused deficiency of cardiac precursors and, subsequently, the heart. In Apelin-deficient gastrulae, the cardiac precursors converged inefficiently to the heart fields and showed ectopic distribution, whereas cardiac precursors overexpressing Apelin exhibited abnormal morphology and rostral migration. Our results implicate GPCR signaling in movements of discrete cell populations that establish organ rudiments during vertebrate gastrulation.  相似文献   

11.
12.
Fgf signaling plays essential roles in many developmental events. To investigate the roles of Fgf4 signaling in zebrafish development, we generated Fgf4 knockdown embryos by injection with Fgf4 antisense morpholino oligonucleotides. Randomized LR patterning of visceral organs including the liver, pancreas, and heart was observed in the knockdown embryos. Prominent expression of Fgf4 was observed in the posterior notochord and Kupffer's vesicle region in the early stages of segmentation. Lefty1, lefty2, southpaw, and pitx2 are known to play crucial roles in LR patterning of visceral organs. Fgf4 was essential for the expression of lefty1, which is necessary for the asymmetric expression of southpaw and pitx2 in the lateral plate mesoderm, in the posterior notochord, and the expression of lefty2 and lefty1 in the left cardiac field. Fgf8 is also known to be crucial for the formation of Kupffer's vesicle, which is needed for the LR patterning of visceral organs. In contrast, Fgf4 was required for the formation of cilia in Kupffer's vesicle, indicating that the role of Fgf4 in the LR patterning is quite distinct from that of Fgf8. The present findings indicate that Fgf4 plays a unique role in the LR patterning of visceral organs in zebrafish.  相似文献   

13.
We have examined the roles of BMP4, Shh, and retinoic acid in establishing the proximal-distal and dorsal-ventral axes in the developing Xenopus eye. Misexpression of BMP4 caused the absence of an optic stalk and the expansion of dorsal and distal markers, tbx2/3/5, and pax6, at the expense of ventral and proximal markers vax2 and pax2. When Shh or Noggin, an antagonist of BMPs, was misexpressed, the reverse expression patterns of these marker genes were observed. These results suggest that BMP4 is involved in the specification of not only dorsal in the optic cup but also distal in the optic vesicle. Because Shh did not suppress bmp4 expression, unlike Noggin, Shh and BMP4 may antagonistically regulate common downstream genes in developing eye. We also found the difference between the effects of Shh and retinoic acid, another possible ventralizing factor, suggesting that Shh could promote ventralization independently of retinoic acid. These findings provide important clues to the coordinate and antagonistic actions of BMP4, Shh, and retinoic acid in axes specifications of Xenopus eyes.  相似文献   

14.
15.
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning.  相似文献   

16.
Ligands of the transforming growth factor β (TGFβ) superfamily, like Nodal and bone morphogenetic protein (BMP), are pivotal to establish left-right (LR) asymmetry in vertebrates. However, the receptors mediating this process are unknown. Here we identified two new type II receptors for BMPs in zebrafish termed bmpr2a and bmpr2b that induce a classical Smad1/5/8 response to BMP binding. Morpholino-mediated knockdown of bmpr2a and bmpr2b showed that they are required for the establishment of concomitant cardiac and visceral LR asymmetry. Expression of early laterality markers in morphants indicated that bmpr2a and bmpr2b act upstream of pitx2 and the nodal-related southpaw (spaw), which are expressed asymmetrically in the lateral plate mesoderm (LPM), and subsequently regulate lefty2 and bmp4 in the left heart field. We demonstrated that bmpr2a is required for lefty1 expression in the midline at early segmentation while bmpr2a/bmpr2b heteromers mediate left-sided spaw expression in the LPM. We propose a mechanism whereby this differential interpretation of BMP signalling through bmpr2a and bmpr2b is essential for the establishment of LR asymmetry in the zebrafish embryo.  相似文献   

17.
18.
Patterning the avian left-right (L/R) body axis involves the establishment of asymmetric molecular signals on the left and right sides of Hensen's node. We have examined the role of the chick Midline 1 gene, cMid1, in generating asymmetric gene expression in the node. cMid1 is initially expressed bilaterally, but its expression is then confined to the right side of the node. We show that this restriction of cMid1 expression is a result of repression by Shh on the left side of the node. Misexpression of cMid1 on the left side of the node results in bilateral Bmp4 expression and a loss of Shh expression. Correspondingly, downstream left pathway genes are repressed while right pathway genes are ectopically activated. Conversely, knocking down endogenous right-sided cMid1 results in a loss of Bmp4 expression and bilateral Shh expression. This results in an absence of right pathway genes and the ectopic activation of the left pathway on the right. Here, we present a revised model for the establishment of asymmetric gene expression in Hensen's node based on the epistatic interactions observed between Shh, cMid1, and Bmp4.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号