首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, involving molecular modeling of wild-type and oncogenic forms of the ras-p21 protein bound to GTPase activating protein GAP and the ras-specific guanine nucleotide exchange-promoting protein, SOS, we identified specific domains of GAP and SOS proteins that differ in conformation when the computed average structures of the corresponding wild-type and oncogenic complexes are superimposed. Additionally, in these previous studies, we have synthesized peptides corresponding to these domains and found that all of them inhibit either or both oncogenic (Val 12-containing) p21- and insulin-activated wild-type p21-induced oocyte maturation. To document further the specificity of the inhibition of these peptides for the ras signal transduction pathway, we have now tested their effects on progesterone-induced maturation that occurs by a ras-independent pathway. None of these peptides, including a peptide corresponding to residues 980–989 of SOS that completely blocks oncogenic p21-induced maturation and also causes extensive inhibition of insulin-induced maturation, affects progesterone-induced maturation, suggesting that all of these peptides are specific for the ras pathway. Since our approach to the design of peptides that can inhibit oncogenic ras-p21 selectively is based on identifying domains that differ in conformation between oncogenic and wild-type complexes, we have now further synthesized peptides that correspond to domains of GAP (residues 903–910) and SOS (residues 792–804) that do not differ in conformation when the average structures are superimposed. These peptides do not inhibit either oncogenic p21- or insulin-induced oocyte maturation, supporting the overall strategy of using peptides from domains that change conformation as the ones most likely to inhibit oncogenic and/or wild-type ras-p21. These results further support the specificity of inhibition of the GAP and SOS peptides from the conformationally distinct domains of both proteins.  相似文献   

2.
ras-p21 protein binds to the son-of-sevenless (SOS) guanine nucleotide-exchange promoter that allows it to exchange GDP for GTP. Previously, we performed molecular dynamics calculations on oncogenic (Val 12-) and wild-type ras-p21 bound to SOS. By superimposing the average structures of these two complexes, we identified four domains (residues 631-641, 676-691, 718-729, and 994-1004) in SOS that change conformation and were candidates for being effector domains. These calculations were performed in the absence of three crystallographically undefined loops (i.e., residues 591-596, 654-675, and 742-751). We have now modeled these loops into the SOS structure and have re-performed the dynamics calculations. We find that all three loop domains undergo large changes in conformation that involve mostly changes in their positioning and not their individual conformations. We have also identified another potential effector domain (i.e., residues 980-989). Overall, our current results suggest that SOS interactions with oncogenic ras-p21 may enhance ras-p21 mitogenic signaling through prolonging its activation by maintaining its binding to GTP and by allowing its effector domains to interact with intracellular targets.  相似文献   

3.
In the preceding paper we performed molecular dynamics calculations of the average structures of the SOS protein bound to wild-type and oncogenic ras–p21. Based on these calculations, we have identified four major domains of the SOS protein, consisting of residues 631–641, 676–691, 718–729, and 994–1004, which differ in structure between the two complexes. We have now microinjected synthetic peptides corresponding to each of these domains into Xenopus laevis oocytes either together with oncogenic (Val 12)-p21 or into oocytes subsequently incubated with insulin. We find that the first three peptides inhibit both oncogenic and wild-type p21-induced oocyte maturation, while the last peptide much more strongly inhibits oncogenic p21 protein-induced oocyte maturation. These results suggest that each identified SOS region is involved in ras–stimulated signal transduction and that the 994–1004 domain is involved uniquely with oncogenic ras–p21 signaling.  相似文献   

4.
In the preceding paper we performed molecular dynamics calculations of the average structures of the SOS protein bound to wild-type and oncogenic ras–p21. Based on these calculations, we have identified four major domains of the SOS protein, consisting of residues 631–641, 676–691, 718–729, and 994–1004, which differ in structure between the two complexes. We have now microinjected synthetic peptides corresponding to each of these domains into Xenopus laevis oocytes either together with oncogenic (Val 12)-p21 or into oocytes subsequently incubated with insulin. We find that the first three peptides inhibit both oncogenic and wild-type p21-induced oocyte maturation, while the last peptide much more strongly inhibits oncogenic p21 protein-induced oocyte maturation. These results suggest that each identified SOS region is involved in ras–stimulated signal transduction and that the 994–1004 domain is involved uniquely with oncogenic ras–p21 signaling.  相似文献   

5.
Oncogenic ras (Val 12-containing)-p21 protein induces oocyte maturation by a pathway that is blocked by peptides from effector domains of ras-p21, i.e., residues 35-47 (that block Val 12-p21-activated raf) and 96-110 and 115-126, which do not affect the ability of insulin-activated cellular p21 to induce maturation. Oncogenic p21 binds directly to jun-N-terminal kinase (JNK), which is blocked by the p21 96-110 and 115-126 peptides. This finding predicts that oncogenic p21, but not insulin, induces maturation by early and sustained activation of JNK. We now directly confirm this prediction by showing that oncogenic p21 induces activating phosphorylation of JNK (JNK-P) and of ERK (MAP kinase) (MAPK-P), whose levels correlate with oocyte maturation. p21 peptides 35-47 and 96-110 block formation of JNK-P and MAPK-P, further confirming this correlation and suggesting, unexpectedly, that raf-MEK-MAPK and JNK-jun pathways strongly interact on the oncogenic p21 pathway. In contrast, insulin activates only low levels of JNK-P, and, surprisingly, we find that insulin induces only low levels of MAPK-P, indicating that insulin and activated normal p21 utilize MAP kinase-independent signal transduction pathways.  相似文献   

6.
Oncogenic ras-p21 directly activates jun-N-terminal kinase (JNK) and its substrate, jun as a unique step on its mitogenic signal transduction pathway. This activation is blocked by the specific JNK-jun inhibitor, glutathione-S-transferase-pi (GST-pi). Four domains of GST-pi have been implicated in this regulatory function: 34-50, 99-121, 165-182, and 194-201. The 34-50 domain is unique in that it does not affect GST-pi binding to JNK-jun but blocks jun phosphorylation by JNK. We now find that it completely blocks oncogenic (Val 12-) ras-p21-induced oocyte maturation but has no effect on insulin-induced oocyte maturation. Because the latter process requires activation of wild-type ras-p21, this peptide appears to be specific for inhibiting only the oncogenic form of ras-p21, suggesting its use in treating ras-induced tumors.  相似文献   

7.
We have previously found that the protein kinase C (PKC) inhibitor, CGP 41 251, blocks oncogenic ras-p21 protein- and beta-PKC-induced oocyte maturation, but only weakly inhibits insulin-induced oocyte maturation (which requires activation of wild-type endogenous ras-p21). Because the dose-response curves for inhibition of oncogenic p21- and beta-PKC-induced oocyte maturation by CGP 41 251 superimpose and because the ras-p21-inactivating antibody, Y13-259, does not inhibit beta-PKC-induced oocyte maturation, we concluded that the oncogenic, but not wild-type, protein requires beta-PKC as a downstream target. Because multiple isoforms of PKC exist and several of these, such as epsilon-PKC, have been found to be important on ras signal transduction pathways, we have investigated which PKC isoforms are critical to each ras protein. For this purpose, we used PKC-isoform-specific inhibitors, which have been shown to inhibit selectively the function and translocation of PKC isoforms in vitro and in vivo. Specifically, the peptides KLFIMN, QEVIRN, and EAVSLKPT each inhibit beta-1, beta-2, and epsilon-PKC, respectively, but do not cross-inhibit other PKC isoforms. We find that the epsilon-PKC inhibitory peptide strongly blocks insulin- but not oncogenic ras-p21-induced oocyte maturation whereas the beta-2 inhibitory peptide more strongly inhibits oncogenic ras-p21-induced oocyte maturation, corroborating our previous studies. The beta-1 inhibitory peptide has little effect on either protein. We conclude that selective inhibition of individual PKC isoforms permits the distinction between signal transduction initiated by oncogenic and activated wild-type p21 proteins and implicate different specific PKC isoforms in mitogenic signal transduction by each of these proteins. The ability to dissect the role of individual PKC isozymes in this regulation is of therapeutic significance.  相似文献   

8.
GTPase activating protein (GAP) is a known regulator of ras-p21 activity and is a likely target of ras-induced mitogenic signaling. The domains of GAP that may be involved in this signaling are unknown. In order to infer which domains of GAP may be involved, we have performed molecular dynamics calculations of GAP complexed to wild-type and oncogenic (Val 12–containing) ras-p21, both bound to GTP. We have computed and superimposed the average structures for both complexes and find that there are four domains of GAP that undergo major changes in conformation: residues 821–851, 917–924, 943–953, and 1003–1020. With the exception of the 943–953 domain, none of these domains is involved in making contacts with ras-p21, and all of them occur on the surface of the protein, making them good candidates for effector domains. In addition, three ras-p21 domains undergo major structural changes in the oncogenic p21-GAP complex: 71–76 from the switch 2 domain; 100–108, which interacts with SOS, jun and jun kinase (JNK); and residues 122–138. The change in conformation of the 71–76 domain appears to be induced by changes in conformation in the switch 1 domain (residues 32–40) and in the adjacent domain involving residues 21–31. In an accompanying paper, we present results from microinjection of peptides corresponding to each of these domains into oocytes induced to undergo maturation by oncogenic ras-p21 and by insulin-activated wild-type cellular p21 to determine whether these domain peptides may be involved in ras signaling through GAP.  相似文献   

9.
In the accompanying article, using molecular dynamics calculations, we found that the 66–77 and 122–138 domains in ras-p21 and the 821–827, 832–845, 917–924, 943–953, and 1003–1020 domains in GAP have different conformations in complexes of GAP with wild-type and oncogenic ras-p21. We have now synthesized peptides corresponding to each of these domains and coinjected them into oocytes with oncogenic p21, which induces oocyte maturation, or injected them into oocytes incubated with insulin that induces maturation by activating wild-type cellular ras-p21. We find that all of these peptides inhibit both agents but do not inhibit progesterone-induced maturation that occurs by a ras-independent pathway. The p21 66–77 and 122–138 peptides cause greater inhibition of oncogenic p21. On the other hand, the GAP 832–845 and 1003–1021 peptides inhibit insulin-induced maturation to a significantly greater extent. Since we have found that activated wild-type and oncogenic p21 activate downstream targets like raf differently, these GAP peptides may be useful probes for identifying elements unique to the wild-type ras-p21 pathway.  相似文献   

10.
In the preceding paper we found from molecular dynamics calculations that the structure of the ras-binding domain (RBD) of raf changes predominantly in three regions depending upon whether it binds to ras-p21 protein or to its inhibitor protein, rap-1A. These three regions of the RBD involve residues from the protein–protein interaction interface, e.g., between residues 60 and 72, residues 97–110, and 111–121. Since the rap-1A–RBD complex is inactive, these three regions are implicated in ras-p21-induced activation of raf. We have therefore co-microinjected peptides corresponding to these three regions, 62–76, 97–110, and 111–121, into oocytes with oncogenic p21 and microinjected them into oocytes incubated in in insulin, which activates normal p2l. All three peptides, but not a control peptide, strongly inhibit both oncogenic p21- and insulin-induced oocyte maturation. These findings corroborate our conclusions from the theoretical results that these three regions constitute raf effector domains. Since the 97–110 peptide is the strongest inhibitor of oncogenic p21, while the 111–121 peptide is the strongest inhibitor of insulin-induced oocyte maturation, the possibility exists that oncogenic and activated normal p21 proteins interact differently with the RBD of raf.  相似文献   

11.
We have previously computed the structures of three loops, residues 591–596, 654–675 and 742–751, in the ras-p21 protein-binding domain (residues 568–1044) of the guanine nucleotide-exchange-promoting SOS protein that were crystallographically undefined when one molecule of ras-p21 (unbound to nucleotide) binds to SOS. Based on our computational results, we synthesized three peptides corresponding to sequences of each of these three loops and found that all three peptides strongly inhibit ras-p21 signaling. More recently, a new crystal structure of SOS has been determined in which this protein binds to two molecules of ras-p21, one unbound to GTP and one bound to GTP. In this structure, the 654–675 loop and residues 742–743 and 750–751 are now crystallographically defined. We have superimposed our energy-minimized structure of the ras-binding domain of SOS bound to one molecule of ras-p21 on the X-ray structure for SOS bound to two molecules of ras-p21. We find that, while the two structures are superimposable, there are large deviations of the residues 673 and 676 and 741 and 752, flanking the two loop segments. This suggests that the binding of the extra ras-p21 molecule, which is far from each of the three loops, induces conformational changes in these domains and further supports their role in signal transduction. In spite of these differences, we have superimposed our computed structures for the loop residues on those from the more recent X-ray structure. Our structure for the 654–675 segment is an anti-parallel beta-sheet with a reverse turn at residues 663–665; in the X-ray structure residues 655–662 adopt an alpha-helical conformation; on the other hand, our computed structure for residues 663–675 superimpose on the X-ray structure for these residues. We further find that our computed structures for residues 742–743 and 750–751 are superimposable on the X-ray structure for these residues.  相似文献   

12.
In the preceding paper we found from molecular dynamics calculations that the structure of the ras-binding domain (RBD) of raf changes predominantly in three regions depending upon whether it binds to ras-p21 protein or to its inhibitor protein, rap-1A. These three regions of the RBD involve residues from the protein–protein interaction interface, e.g., between residues 60 and 72, residues 97–110, and 111–121. Since the rap-1A–RBD complex is inactive, these three regions are implicated in ras-p21-induced activation of raf. We have therefore co-microinjected peptides corresponding to these three regions, 62–76, 97–110, and 111–121, into oocytes with oncogenic p21 and microinjected them into oocytes incubated in in insulin, which activates normal p2l. All three peptides, but not a control peptide, strongly inhibit both oncogenic p21- and insulin-induced oocyte maturation. These findings corroborate our conclusions from the theoretical results that these three regions constitute raf effector domains. Since the 97–110 peptide is the strongest inhibitor of oncogenic p21, while the 111–121 peptide is the strongest inhibitor of insulin-induced oocyte maturation, the possibility exists that oncogenic and activated normal p21 proteins interact differently with the RBD of raf.  相似文献   

13.
The X-ray crystal structure of the ras oncogene-encoded p21 protein bound to SOS, the guanine nucleotide exchange-promoting protein, has been determined. We have undertaken to determine if there are differences between the three-dimensional structures of SOS bound to normal and oncogenic (Val 12-p21) proteins. Using molecular dynamics, we have computed the average structures for both complexes and superimposed them. We find four domains of SOS that differ markedly in structure: 631–641, 676–691, 718–729, and 994–1004. Peptides corresponding to these sequences have been synthesized and found to be powerful modulators of oncogenic p21 in cells as described in an accompanying paper. We find that the SOS segment from 809–815 makes contacts with multiple domains of ras-p21 and can facilitate correlated conformational changes in these domains.  相似文献   

14.
By comparing the average structures, computed using molecular dynamics, of the ras-binding domain of raf (RBD) bound to activated wild-type ras-p21 and its homologous inhibitory protein, rap-1A, we formerly identified three domains of the RBD that changed conformation between the two complexes, residues 62–76, 97–110, and 111–121. We found that one synthetic peptide, corresponding to RBD residues 97–110, selectively inhibited oncogenic ras-p21-induced oocyte maturation. In this study, we performed molecular dynamics on the Val 12-ras-p21-RBD complex and compared its average structure with that for the wild-type protein. We find that there is a large displacement of a loop involving these residues when the structures of the two complexes are compared. This result corroborates our former finding that the RBD 97–110 peptide inhibits only signal transduction by oncogenic ras-p21 and suggests that oncogenic p21 uses this loop to interact with raf in a unique manner.  相似文献   

15.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   

16.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   

17.
In previous studies we have found that oncogenic (Val 12)-ras-p21 induces Xenopus laevis oocyte maturation that is selectively blocked by two ras-p21 peptides, 35-47, also called PNC-7, that blocks its interaction with raf, and 96-110, also called PNC-2, that blocks its interaction with jun-N-terminal kinase (JNK). Each peptide blocks activation of both JNK and MAP kinase (MAPK or ERK) suggesting interaction between the raf-MEK-ERK and JNK-jun pathways. We further found that dominant negative raf blocks JNK induction of oocyte maturation, again suggesting cross-talk between pathways. In this study, we have undertaken to determine where these points of cross-talk occur. First, we have immunoprecipitated injected Val 12-Ha-ras-p21 from oocytes and found that a complex forms between ras-p21 raf, MEK, MAPK, and JNK. Co-injection of either peptide, but not a control peptide, causes diminished binding of ras-p21, raf, and JNK. Thus, one site of interaction is cooperative binding of Val 12-ras-p21 to raf and JNK. Second, we have injected JNK, c-raf, and MEK into oocytes alone and in the presence of raf and MEK inhibitors and found that JNK activation is independent of the raf-MEK-MAPK pathway but that activated JNK activates raf, allowing for activation of ERK. Furthermore, we have found that constitutively activated MEK activates JNK. We have corroborated these findings in studies with isolated protein components from a human astrocyte (U-251) cell line; that is, JNK phosphorylates raf but not the reverse; MEK phosphorylates JNK but not the reverse. We further have found that JNK does not phosphorylate MAPK and that MAPK does not phosphorylate JNK. The stress-inducing agent, anisomycin, causes activation of JNK, raf, MEK, and ERK in this cell line; activation of JNK is not inhibitable by the MEK inhibitor, U0126, while activation of raf, MEK, and ERK are blocked by this agent. These results suggest that activated JNK can, in turn, activate not only jun but also raf that, in turn, activates MEK that can then cross-activate JNK in a positive feedback loop.  相似文献   

18.
We have recently shown that a peptide (residues 35-47) from a functional region of the ras p21 protein, thought to be involved in the binding of p21 to GTPase activating protein, the antibiotic azatyrosine, known to induce the ras-recision gene, and the selective protein kinase C inhibitor, CGP 41,251, all inhibit oncogenic p21 protein-induced maturation of oocytes in a dose-dependent manner. We now show that these three agents only partially inhibit insulin-induced oocyte maturation, known to be dependent on activation of cellular p21 protein. On the other hand, the anti-p21 protein antibody Y13-259 completely inhibits both insulin- and oncogenic p21 protein-induced maturation as does a tetrapeptide, CVIM, known to block the enzyme farnesyl transferase which covalently attaches the farnesyl moiety to the p21 protein allowing it to attach to the cell membrane. Our results suggest that while the oncogenic and insulin-activated normal p21 proteins share certain elements of their signal transduction pathways in common, these pathways diverge and allow for selective inhibition of the oncogenic pathway.  相似文献   

19.
We have previously found that a ras switch 1 domain peptide (PNC-7, residues 35–47) selectively blocks oocyte maturation induced by oncogenic (Val 12–containing) ras-p21 protein and also blocks c-raf–induced oocyte maturation. We now find that oncogenic ras-p21 does not inhibit oocyte maturation of a constitutively activated raf protein (raf BXB) that is lacking most of the first 301 amino terminal amino acids, including the major ras binding domain and accessory ras-binding regions. We also find that a dominant negative raf that completely blocks c-raf–induced maturation likewise does not block raf-BXB–induced maturation. We conclude that PNC-7 blocks ras by binding to the amino-terminal domain of raf and that raf BXB must initiate signal transduction in the cytosol.  相似文献   

20.
Theras-oncogene-encoded p21 protein becomes oncogenic if amino acid substitutions occur at critical positions in the polypeptide chain. The most commonly found oncogenic forms contain Val in place of Gly 12 or Leu in place of Gln 61. To determine the effects of these substitutions on the three-dimensional structure of the whole p21 protein, we have performed molecular dynamics calculations on each of these three proteins bound to GDP and magnesium ion to compute the average structures of each of the three forms. Comparisons of the computed average structures shows that both oncogenic forms with Val 12 and Leu 61 differ substantially in structure from that of the wild type (containing Gly 12 and Gln 61) in discrete regions: residues 10–16, 32–47, 55–74, 85–89, 100–110, and 119–134. All of these regions occur in exposed loops, and several of them have already been found to be involved in the cellular functioning of the p21 protein. These regions have also previously been identified as the most flexible domains of the wild-type protein and have been bound to be the same ones that differ in conformation between transforming and nontransforming p21 mutant proteins neither of which binds nucleotide. The two oncogenic forms have similar conformations in their carboxyl-terminal domains, but differ in conformation at residues 32–47 and 55–74. The former region is known to be involved in the interaction with at least three downstream effector target proteins. Thus, differences in structure between the two oncogenic proteins may reflect different relative affinities of each oncogenic protein for each of these effector targets. The latter region, 55–74, is known to be a highly mobile segment of the protein. The results strongly suggest that critical oncogenic amino acid substitutions in the p21 protein cause changes in the structures of vital domains of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号