首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two constituent proteases of the hatching enzyme of the medaka ( Oryzias latipes ), choriolysin H (HCE) and choriolysin L (LCE), belong to the astacin protease family. Astacin family proteases have a consensus amino acid sequence of HExxHxxGFxHExxRxDR motif in their active site region. In addition, HCE and LCE have a consensus sequence, SIMHYGR, in the downstream of the active site. Oligonucleotide primers were constructed that corresponded to the above-mentioned amino acid sequences and polymerase chain reactions were performed in zebrafish ( Brachydanio rerio ) and masu salmon ( Oncorynchus masou ) embryos. Using the amplified fragments as probes, two full-length cDNA were isolated from each cDNA library of the zebrafish and the masu salmon. The predicted amino acid sequences of the cDNA were similar to that of the medaka enzymes, more similar to HCE than to LCE, and it was conjectured that hatching enzymes of zebrafish and masu salmon also belonged to the astacin protease family. The final location of hatching gland cells in the three fish species: medaka, zebrafish and masu salmon, is different. The hatching gland cells of medaka are finally located in the epithelium of the pharyngeal cavity, those of zebrafish are in the epidermis of the yolk sac, and those of masu salmon are both in the epithelium of the pharyngeal cavity and the lateral epidermis of the head. However, in the present study, it was found that the hatching gland cells of zebrafish and masu salmon originated from the anterior end of the hypoblast, the Polster, as did those of medaka by in situ hybridization. It was clarified, therefore, that such difference in the final location of hatching gland cells among these species resulted from the difference in the migratory route of the hatching gland cells after the Polster region.  相似文献   

2.
Two cDNA homologues of medaka hatching enzyme -- high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE) -- were cloned from Fundulus heteroclitus embryos. Amino acid sequences of the mature forms of Fundulus HCE (FHCE) and LCE (FLCE) were 77.9% and 63.3% identical to those of medaka HCE and LCE, respectively. In addition, phylogenetic analysis clearly showed that FHCE and FLCE belonged to the clades of HCE and LCE, respectively. Exon-intron structures of FHCE and FLCE genes were similar to those of medaka HCE (intronless) and LCE (8-exon-7-intron) genes, respectively. Northern blotting and whole-mount in situ hybridization showed that both genes were concurrently expressed in hatching gland cells. Their spatio-temporal expression pattern was basically similar to that of medaka hatching enzyme genes. We separately purified two isoforms of FHCE, FHCE1 and FHCE2, from hatching liquid through gel filtration and cation exchange column chromatography in the HPLC system. The two isoforms, slightly different in molecular weight and in MCA-peptide-cleaving activity, swelled the inner layer of chorion by their limited proteolysis, like the medaka HCE isoforms. In addition, we identified FLCE by TOF-MS. Similar to the medaka LCE, FLCE hardly digested intact chorion. FHCE and FLCE together, when incubated with chorion, rapidly and completely digested the chorion, suggesting their synergistic effect in chorion digestion. Such a cooperative digestion was confirmed by electron microscopic observation. The results suggest that a hatching enzyme system composed of HCE and LCE is conserved between two different teleosts Fundulus and medaka.  相似文献   

3.
We isolated seven cDNA clones from embryos of the Japanese eel Anguilla japonica. Each deduced amino acid sequence consisted of a signal peptide, a propeptide and a mature enzyme portion belonging to the astacin protease family. A phylogenetic analysis showed that the eel enzymes resembled the high choriolytic enzyme (HCE) of medaka Oryzias latipes, and the hatching enzymes of the zebra fish Danio rerio and masu salmon Oncorhynchus masou. Hatching enzymes of these teleosts belonged to the group of the medaka HCE, and not the medaka low choriolytic enzyme (LCE), another hatching enzyme of medaka. Southern blot analysis showed that the genes of the eel hatching enzymes were multicopy genes like the medaka HCE genes. However, one of the eel hatching enzyme genes comprised eight exons and seven introns, and the exon-intron organization was similar to the medaka LCE gene, which is a single-copy gene. The molecular evolution of the fish hatching enzyme genes is discussed. In addition, whole-mount in situ hybridization and immunocytochemistry showed that the eel hatching enzyme was first expressed in the pillow anterior to the forebrain of early neurula, and finally in the cell mass on the yolk sac of later stage embryos. The early differentiation profile of eel hatching gland cells was similar to that of medaka, masu salmon and zebrafish, whereas the final location of the gland cells was different among fishes.Edited by N. Satoh  相似文献   

4.
5.
The hatching enzyme of oviparous euteleostean fishes consists of two metalloproteases: high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE). They cooperatively digest the egg envelope (chorion) at the time of embryo hatching. In the present study, we investigated the hatching of embryos of the ovoviviparous black rockfish Sebastes schlegelii. The chorion-swelling activity, HCE-like activity, was found in the ovarian fluid carrying the embryos immediately before the hatching stage. Two kinds of HCE were partially purified from the fluid, and the relative molecular masses of them matched well with those deduced from two HCE cDNAs, respectively, by MALDI-TOF MS analysis. On the other hand, LCE cDNAs were cloned; however, the ORF was not complete. These results suggest that the hatching enzyme is also present in ovoviviparous fish, but is composed of only HCE, which is different from the situation in other oviparous euteleostean fishes. The expression of the HCE gene was quite weak when compared with that of the other teleostean fishes. Considering that the black rockfish chorion is thin and fragile, such a small amount of enzyme would be enough to digest the chorion. The black rockfish hatching enzyme is considered to be well adapted to the natural hatching environment of black rockfish embryos. In addition, five aberrant spliced LCE cDNAs were cloned. Several nucleotide substitutions were found in the splice site consensus sequences of the LCE gene, suggesting that the products alternatively spliced from the LCE gene are generated by the mutations in intronic regions responsible for splicing.  相似文献   

6.
Kawaguchi M  Yasumasu S  Hiroi J  Naruse K  Suzuki T  Iuchi I 《Gene》2007,392(1-2):77-88
Using gene cloning and in silico cloning, we analyzed the structures of hatching enzyme gene orthologs of vertebrates. Comparison led to a hypothesis that hatching enzyme genes of Japanese eel conserve an ancestral structure of the genes of fishes, amphibians, birds and mammals. However, the exon-intron structure of the genes was different from species to species in Teleostei: Japanese eel hatching enzyme genes were 9-exon-8-intron genes, and zebrafish genes were 5-exon-4-intron genes. In the present study, we further analyzed the gene structures of fishes belonging to Acanthopterygii. In the species of Teleostei we examined, diversification of hatching enzyme gene into two paralogous genes for HCE (high choriolytic enzyme) and LCE (low choriolytic enzyme) was found only in the acanthopterygian fishes such as medaka Oryzias latipes, Fundulus heteroclitus, Takifugu rubripes and Tetraodon nigroviridis. In addition, the HCE gene had no intron, while the LCE gene consisted of 8 exons and 7 introns. Phylogenetic analysis revealed that HCE and LCE genes were paralogous to each other, and diverged during the evolutionary lineage to Acanthopterygii. Analysis of gene synteny and cluster structure showed that the syntenic genes around the HCE and LCE genes were highly conserved between medaka and Teraodon, but such synteny was not found around the zebrafish hatching enzyme genes. We hypothesize that the zebrafish hatching enzyme genes were translocated from chromosome to chromosome, and lost some of their introns during evolution.  相似文献   

7.
One of the two component proteases of the hatching enzyme of the fish, Oryzias latipes, low choriolytic enzyme (LCE), was isolated from the hatching liquid and partly characterized. The enzyme was a basic protein with molecular weight of about 25.5 kDa. Like high choriolytic enzyme (HCE), the other component of the O. latipes hatching enzyme [Yasumasu, S. et al. (1989) J. Biochem. 105, 204-211], LCE was considered to be a zinc-protease from the results of inhibitor studies and metal analyses. However, LCE was found to be distinct from HCE not only in some biochemical characteristics such as molecular weight, amino acid composition, and isoelectric point, but also in some enzymological properties such as substrate specificity, heat stability, and mode of action toward their natural substrate, chorion (egg envelope). Although LCE was almost incapable of digesting the inner layer of intact chorion, it very efficiently digested the inner layer of chorion that had been swollen previously by the action of HCE. Taking account of the fact that HCE swells the inner layer of intact chorion by partial proteolysis but does not efficiently digest the swollen chorion any more [Yasumasu, S. et al. (1989) J. Biochem. 105, 204-211], the present results demonstrated an essential role of LCE in choriolysis, in cooperation with HCE.  相似文献   

8.
We purified two hatching enzymes, namely high choriolytic enzyme (HCE; EC 3.4.24.67) and low choriolytic enzyme (LCE; EC 3.4.24.66), from the hatching liquid of Fundulus heteroclitus, which were named Fundulus HCE (FHCE) and Fundulus LCE (FLCE). FHCE swelled the inner layer of egg envelope, and FLCE completely digested the FHCE-swollen envelope. In addition, we cloned three Fundulus cDNAs orthologous to cDNAs for the medaka precursors of egg envelope subunit proteins (i.e. choriogenins H, H minor and L) from the female liver. Cleavage sites of FHCE and FLCE on egg envelope subunit proteins were determined by comparing the N-terminal amino acid sequences of digests with the sequences deduced from the cDNAs for egg envelope subunit proteins. FHCE and FLCE cleaved different sites of the subunit proteins. FHCE efficiently cleaved the Pro-X-Y repeat regions into tripeptides to dodecapeptides to swell the envelope, whereas FLCE cleaved the inside of the zona pellucida domain, the core structure of egg envelope subunit protein, to completely digest the FHCE-swollen envelope. A comparison showed that the positions of hatching enzyme cleavage sites on egg envelope subunit proteins were strictly conserved between Fundulus and medaka. Finally, we extended such a comparison to three other euteleosts (i.e. three-spined stickleback, spotted halibut and rainbow trout) and found that the egg envelope digestion mechanism was well conserved among them. During evolution, the egg envelope digestion by HCE and LCE orthologs was established in the lineage of euteleosts, and the mechanism is suggested to be conserved.  相似文献   

9.
We purified eel hatching enzyme (EHE) from the hatching liquid of Japanese eel Anguilla japonica belonging to Elopomorpha to a single band on SDS/PAGE. TOF-MS analysis revealed that the purified EHE contained several isozymes with similar molecular masses. Comparison of the egg envelope digestion specificities of the purified EHE and of recombinant EHE4, one of the EHE isozymes, suggested that the isozymes contained in the purified EHE were functionally the same in terms of egg envelope digestion. By electron microscopy, the egg envelope became swollen after treatment with the purified EHE. The EHE cleavage sites on the zona pellucida (ZP) protein of the egg envelope were located in the N-terminal repeat regions. In previous phylogenetic analysis, we suggested that fishes included in Elopomorpha, as basal teleosts, possess a single type of hatching enzyme genes, and that fishes in Otocephala and Euteleostei gain two types of hatching enzyme genes called clade I and II genes by duplication. Further, the clade I enzymes, zebrafish hatching enzyme (ZHE1) and medaka high choriolytic enzyme (HCE), swell the egg envelope by cleaving the N-terminal regions of ZP proteins, while the clade II enzyme, medaka low choriolytic enzyme (LCE), solubilizes the swollen envelope by cleaving the site at the middle region on the ZP domain. In this evolutionary scenario, our findings support that hatching of Japanese eel conserves the ancestral mechanism of fish egg envelope digestion. The clade I enzymes inherit the ancestral enzyme function, and the clade II enzymes gain a new function during evolution to Otocephala and Euteleostei.  相似文献   

10.
Antibodies against purified hatching enzyme (HE) from the pike, Esox lucius L., have been used to examine different aspects of the presence of the enzyme in the ontogeny of this teleostean fish. Immunochemical analysis indicates that the two proteolytic enzymes which occur in the hatching medium arise from a single protease, HE itself. The second proteolytic fraction found in gel filtration of hatching medium could be a heterogeneous population of complexes of HE with digestion fragments of its natural substrate, the zona radiata. Immunofluorescence microscopy by means of anti-HE antibodies demonstrates that HE is localized in the so-called hatching gland cells (HGCs). The HGCs in pike appear as oval to round cells 10–15 μm in diameter containing granules of 1.5–2.3 μm. They are found interspersed between the periderm and the presumptive epidermis. The number of HGCs and their granule content increase significantly until the 35-somite stage to reach about 1200 and 30, respectively. From then on these numbers do not change until hatching in the 66-somite stage. The distribution of the HGCs over the embryo also changes, probably since HGC precursors in the yolk sac differentiate to HGCs later than their counterparts in the head region. The immunocytochemical procedure further shows that HE can be detected from the 10-somite stage on. Discrete hatching gland remnant bodies, phagocytized by epidermal cells, are observed in larval stages until 3–7 days after emergence of the embryo.  相似文献   

11.
Many teleost embryos produce an enzyme within specialized glands, which facilitate hatching. The enzyme attacks the chorion which becomes so weak that it may be ruptured easily by a blow of the tail.
The embryos of Brachydanio rerio, Danio malabaricus, Moenkhausia oligolepis and Barbus schuberti show some morphological differences in the distribution of the hatching gland cells. More specificity can be found in the ultrastructure of hatching gland cells, which are loaded with enzyme granules prior to hatching. In all four species the nucleus is located near the basis of the cell. The hatching enzyme is contained within granules, which arise from the Golgi body.  相似文献   

12.
SYNOPSIS. Mechanisms of two constituent steps of the hatchingprocess, i.e., secretion of hatching enzyme from the gland cellsand enzymatic choriolysis, in the Medaka, Oryzias latipes, aredescribed. The ultrastructural changes of the hatching glandcells occurring at the initiation of electrically induced secretionas well as of natural secretion were the swelling of each glandcell and the separation of joints of the epithelial cells coveringthe gland cells, followed by a resultant exposure of the apicalpart of the gland cells. These changes, though their triggeringmechanisms are not sufficiently clarified, suggest an interventionof some mechanical stimuli in the initiation of secretion. Decreasein electron density of the secretory granules also occurredimmediately prior to the initiation of secretion. The secreted hatching enzyme was found to dissolve the innerlayer of chorion by attacking the scleroprotein of the innerlayer at some restricted sites and liberating a group of solubleglycoproteins of high molecular weights. This selective digestionappears to be the reason why choriolysis proceeds efficientlyduring a short period of time at hatching.  相似文献   

13.
A pair of rosette glands (one of the tegumental glands in crustaceans) is present at the root of the dorsal spine of the thorax in mature embryos of the estuarine crab Sesarma haematocheir. Each rosette gland is spherical, 45-50 microm in diameter. This gland consists of three types of cells: 18-20 secretory cells, one central cell, and one canal cell. The secretory cells are further classified into two types on the basis of the morphology of secretory granules. There are 17-19 a cells, and only one b cell per rosette gland. An a cell contains spherical secretory granules of 2-3 microm in diameter. The granules are filled with highly electron-dense materials near the nucleus but have lower electron-density near the central cell. The secretory granules contained in the b cell have an irregular shape and are 1-1.5 microm in diameter. The density of the materials in the granules is uniform throughout the cytoplasm. The secretory granules contained in both the a and b cells are produced by the rough endoplasmic reticulum. Materials in the granules are exocytotically discharged into the secretory apparatus inside the secretory cell, sent to the extracellular channels in the central cell, and secreted through the canal cell. The rosette gland can be distinguished from the epidermal cells 2 weeks after egg-laying and the gland matures just before hatching. Materials produced by this gland are secreted after hatching and secretion continues through five stages of zoeal larvae. These rosette glands were never found in the megalopal larva. Rosette glands are found in the embryos of Sesarma spp. and Uca spp. In other crabs, tegumental glands are also found at the same position as in the embryo of S. haematocheir, but the fine structure of their glands is largely different from that of the rosette gland. On the basis of the morphology of secretory cells (a-g cell types), the tegumental glands of a variety of crab embryos can be classified into four types, including rosette glands (type I-IV). The function of these tegumental glands is not yet known, but different types of the gland seem to reflect the phylogeny of the crabs rather than differences of habitat.  相似文献   

14.
Hatching glands in embryos of teleosts and amphibians have been reported to be indispensable for hatching of the embryos. The cephalopod has capsuled eggs, so we expected to find some exocrine organ in the embryos that functioned as a hatching gland. The tail gland (Hoyle's organ) has been suspected to be a hatching gland in the cephalopod, and therefore we examined it during the course of development of cuttlefish embryos. Cells in the tail gland appeared similar to the hatching gland cells (HGCs) of teleosts and amphibians, and contained a number of secretion granules that also resembled the hatching enzyme granules (HEGs) in HGCs of teleosts and amphibians in size, electron density and distribution in the cells. However, a few of these granules were discharged one after another from an early stages, whereas most of them were retained up to the stage just before hatching, and then discharged all at once. The former process of trickling discharge was similar to that in amphibians and the latter process of abrupt discharge resembled that in teleosts.  相似文献   

15.
The hatching enzyme is an embryo-secreted enzyme(s) which digests the egg envelope, allowing the embryo to emerge at the time of hatching. The hatching enzyme of the fish, Oryzias latipes, has recently been found to consist of two kinds of proteases which may digest the inner layer of chorion (egg envelope) cooperatively [Yasumasu, S. et al. (1988) Zool. Sci. 5, 191-195]. In the present study, one of them, high choriolytic (egg envelope digesting) enzyme (HCE) was purified and some biochemical and enzymological properties were examined. The enzyme was a basic protein with a molecular weight of about 24 kDa, and exhibited choriolytic activity as well as proteolytic (caseinolytic) activity. The results of inhibitor studies and metal analyses strongly suggested that it was a zinc-protease. The purified HCE consisted of two probable isomers, HCE-1 and HCE-2. Both of them were markedly similar in amino acid composition, specific activities of choriolysis and proteolysis, and substrate specificity as determined using MCA-peptides. Moreover, they were not separable on SDS-PAGE, electrofocusing PAGE, or ultracentrifugal analysis, but were discriminated only on HPLC with a CM-300 column. Thus, the mixture of HCE-1 and HCE-2 could be regarded as almost a single enzyme, HCE. When it acted on an intact chorion, the purified HCE caused a remarkable swelling of its inner layer with concomitant release of peptides from it. Once the inner layer of chorion was swollen, the enzyme hardly digested it.  相似文献   

16.
Secretory granules of hatching gland were isolated from a 0.3 M sucrose homogenate of whole medaka embryos at prehatching stage by differential centrifugation, followed by a Percoll density gradient centrifugation. The obtained preparation was almost free of melanosomes and composed exclusively of the secretory granules of hatching gland (hatching enzyme granules), as judged by morphological as well as enzymological criteria.
The aqueous extracts of the purified secretory granules showed a specific choriolytic activity as high as about 40 times that of a partially purified secretory granule preparation, P1,000, and represented a single protein band with molecular weight of about 21,000 on SDS-polyacrylamide gel electrophoresis. It was also revealed that a major component of the hatching enzyme preparation (P II–0.3 enzyme, 13) purified from the hatching liquid was identical with the 21,000 molecular weight band.
These results suggest that the hatching enzyme is present in the secretory granules of prehatching embryos in an active molecular form.  相似文献   

17.
Malic enzyme [L-malate-NADP oxidoreductase (decarboxylating), EC 1.1.1.40] and fatty acid synthase activities were barely detectable in the uropygial gland of duck embryos until 4 or 5 days before hatching, when they began to increase. These activities increased about 30- and 140-fold, respectively, by the day of hatching. Malic enzyme and fatty acid synthase activities were also very low in embryonic liver. However, hepatic malic enzyme activity did not increase until the newly hatched ducklings were fed. Hepatic fatty acid synthase began to increase the day before hatching and the rate of increase in enzyme activity accelerated markedly when the newly hatched ducklings were fed. Starvation of newly hatched or 12-day-old ducklings had no effect on the activities of malic enzyme and fatty acid synthase in the uropygial gland but markedly inhibited these activities in liver. Changes in the concentrations of both enzymes and in the relative synthesis rates of fatty acid synthase correlated with enzyme activities in both uropygial gland and liver. Developmental patterns for sequence abundance of malic enzyme and fatty acid synthase mRNAs in uropygial gland and liver were similar to those for their respective enzyme activities. Starvation of 4-day-old ducklings had no significant effect on the abundance of these mRNAs in uropygial gland but caused a pronounced decrease in their abundance in liver. It is concluded that developmental and nutritional regulation of these enzymes is tissue specific and occurs primarily at a pretranslational level in both uropygial gland and liver.  相似文献   

18.
鲤胚胎孵化腺细胞   总被引:5,自引:1,他引:4  
鲤胚胎孵化腺为单细胞腺体,发生于外胚层,可特异地被PAS染色。最早可在眼色素期检验出孵化腺细胞(Hatching gland cell,HGC)它们主要分布在头部腹面及头部与卵黄囊连接处。开始,HGC位于表皮细胞下面,随发育迁移到胚胎表面。根据扫描和透射电镜观察,在分泌孵化酶的前后,HGC区表面细胞呈鸡冠花状和疣状两种突起。前者系HGC处于分泌孵化酶期间;后者系HGC业已完成分泌作用,由于相邻的表皮细胞活动而形成的。HGC内富有粗面内质网、线粒体、核糖体和高尔基体,并由后者合成酶原颗粒。HGC在完成分泌作用后,仍留在表皮中,以后逐渐退化,但在孵化后30h仍可见残留的HGC。  相似文献   

19.
Cephalopods encapsulate their eggs in protective egg envelopes. To hatch from this enclosure, most cephalopod embryos release egg shell-digesting choriolytic enzymes produced by the Hoyle organ (HO). After hatching, this gland becomes inactive and rapidly degrades by programmed cell death. We aim to characterize morphologically the development, maturation and degradation of the gland throughout embryonic and first juvenile stages in Sepia officinalis. Special focus is laid on cell death mechanisms and the presence of nitric oxide synthase during gland degradation. Hatching enzyme has been examined in view of metallic contents, commonly amplifying enzyme effectiveness. HO gland cells are first visualized at embryonic stage 23; secretion is observed from stage 27 onwards. Degradation of the HO occurs after hatching within two days by the rarely observed autophagic process, recognized for the first time in cephalopods. Nitric oxide synthase immunopositivity was not found in the HO cells after hatching, suggesting a possible NO role in cell death signalling. Although the HO ‘life course’ chronology in S. officinalis is similar to other cephalopods, gland degradation occurs by autophagy instead of necrosis. Eggs that combine a large perivitelline space and multi-layered integument seem to require a more complex and large gland system.  相似文献   

20.
《The Journal of cell biology》1986,103(6):2299-2309
The biosynthesis of the peptides caerulein and PGLa in granular skin glands of Xenopus laevis proceeds through a pathway that involves discrete morphological rearrangements of the entire secretory compartment. Immunocytochemical localization of these peptides during gland development indicates that biosynthetic precursors are synthesized in intact secretory cells, whereas posttranslational processing requires morphological reorganization to a vacuolated stage. The bulk of the processed secretory material is then stored in vacuolae- derived storage granules. In the mature gland, storage granules are still formed at a low level. However, in this case processing takes place in a distinct cytoplasmic structure, the multicored body, which we suggest to be functionally equivalent to vacuolae. When granular glands regenerate after having lost all their storage granules upon strong stimuli, another morphological pathway is used. 2 wk after gland depletion, secretory cells become arranged in a monolayer that covers the luminal surface of the gland. Storage granules are formed continuously within these intact secretory cells. Here, precursor processing does not require a vacuolated stage as in newly generated glands but occurs in multicored bodies. Most storage granules seem to be formed in the third week of regeneration. The high biosynthetic activity is also reflected by the high activity of the putative processing enzyme dipeptidyl aminopeptidase during this period of regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号