首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Site-directed mutations were constructed in photosystem II of Synechocystis sp. PCC6803 in which the axial ligand, D1-His198, of special pair chlorophyll PD1 was replaced with Gln and where D1-Thr179, which overlies monomeric chlorophyll ChlD1, was replaced with His. The D1-His198Gln mutation produces a 3nm displacement to the blue of the bleaching minimum in the Soret and in the Qy region of the (P+QA--PQA) absorbance difference spectrum. To a first approximation, the bleaching can be assigned to the low-energy exciton transition of the special pair chlorophylls PD1/PD2. The D1-Thr179His mutation produces a 2nm displacement to the red of the bleaching minimum in the Qy region of the (3P-1P) absorbance difference spectrum. Analysis of the flash-induced (P+QA--PQA) and (3P-1P) absorbance difference spectra of both mutants compared with wild-type at 80K indicate that the cation of the oxidized donor P+ is predominantly localized on the chlorophyll PD1 of the special pair and that the reaction centre triplet state, produced upon charge recombination from 3[P+Pheo-], when the primary quinone electron acceptor QA is doubly reduced, is primarily localized on ChlD1.  相似文献   

2.
3.
L B Smart  S L Anderson    L McIntosh 《The EMBO journal》1991,10(11):3289-3296
We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core.  相似文献   

4.
The D1 protein of the photosystem II reaction center is thought to be the most light-sensitive component of the photosynthetic machinery. To understand the mechanisms underlying the light sensitivity of D1, we performed in vitro random mutagenesis of the psbA gene that codes for D1, transformed the unicellular cyanobacterium Synechocystis sp. PCC 6803 with mutated psbA, and selected phototolerant transformants that did not bleach in high intensity light. A region of psbA2 coding for 178 amino acids of the carboxyl-terminal portion of the peptide was subjected to random mutagenesis by low fidelity polymerase chain reaction amplification or by hydroxylamine treatment. This region contains the binding sites for Q(B), D2 (through Fe), and P680. Eighteen phototolerant mutants with single and multiple amino acid substitutions were selected from a half million transformants exposed to white light at 320 micromol m(-2) s(-1). A strain transformed with non-mutagenized psbA2 became bleached under the same conditions. Site-directed mutagenesis has confirmed that one or more substitutions of amino acids at residues 234, 254, 260, 267, 322, 326, and 328 confers phototolerance. The rate of degradation of D1 protein was not appreciably affected by the mutations. Reduced bleaching of mutant cyanobacterial cells may result from continued buildup of photosynthetic pigment systems caused by changes in redox signals originating from D1.  相似文献   

5.
Vavilin D  Xu H  Lin S  Vermaas W 《Biochemistry》2003,42(6):1731-1746
Using a Synechocystis sp. PCC 6803 mutant strain that lacks photosystem (PS) I and that synthesizes chlorophyll (Chl) b, a pigment that is not naturally present in the wild-type cyanobacterium, the functional consequences of incorporation of this pigment into the PS II core complex were investigated. Despite substitution of up to 75% of the Chl a in the PS II core complex by Chl b, the modified PS II centers remained essentially functional and were able to oxidize water and reduce Q(A), even upon selective excitation of Chl b at 460 nm. Time-resolved fluorescence decay measurements upon Chl excitation showed a significant reduction in the amplitude of the 60-70 ps component of fluorescence decay in open Chl b-containing PS II centers. This may indicate slower energy transfer from the PS II core antenna to the reaction center pigments or slower energy trapping. Chl b and pheophytin b were present in isolated PS II reaction centers. Pheophytin b can be reversibly photoreduced, as evidenced from the absorption bleaching at approximately 440 and 650 nm upon illumination in the presence of dithionite. Upon excitation at 685 nm, transient absorption measurements using PS II particles showed some bleaching at 650 nm together with a major decrease in absorption around 678 nm. The 650 nm bleaching that developed within approximately 10 ps after the flash and then remained virtually unchanged for up to 1 ns was attributed to formation of reduced pheophytin b and oxidized Chl b in some PS II reaction centers. Chl b-containing PS II had a lower rate of charge recombination of Q(A)(-) with the donor side and a significantly decreased yield of delayed luminescence in the presence of DCMU. Taken together, the data suggest that Chl b and pheophytin b participate in electron-transfer reactions in PS II reaction centers of Chl b-containing mutant of Synechocystis without significant impairment of PS II function.  相似文献   

6.
7.
We isolated highly-purified photochemically active photosystem (PS) II reaction center (RC) complexes from the cyanobacterium Synechocystis sp. PCC 6803 using a histidine-tag introduced to the 47 kDa chlorophyll protein, and characterized their spectroscopic properties. Purification was carried out in a one-step procedure after isolation of PS II core complex. The RC complexes consist of five polypeptides, the same as in spinach. The pigment contents per two molecules of pheophytin a were 5.8 +/- 0.3 chlorophyll (Chl) a and 1.8 +/- 0.1 beta-carotene; one cytochrome b(559) was found per 6.0 Chl a molecules. Overall absorption and fluorescence properties were very similar to those of spinach PS II RCs; our preparation retains the best properties so far isolated from cyanobacteria. However, a clear band-shift of pheophytin a and beta-carotene was observed. Reasons for these differences, and RC composition, are discussed on the basis of the three-dimensional structure of complexes.  相似文献   

8.
《BBA》2022,1863(1):148507
Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron?sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.  相似文献   

9.
Zak E  Pakrasi HB 《Plant physiology》2000,123(1):215-222
Specific inhibition of photosystem I (PSI) was observed under low-temperature conditions in the cyanobacterium Synechocystis sp. strain PCC 6803. Growth at 20 degrees C caused inhibition of PSI activity and increased degradation of the PSI reaction center proteins PsaA and PsaB, while no significant changes were found in the level and activity of photosystem II (PSII). BtpA, a recently identified extrinsic thylakoid membrane protein, was found to be a necessary regulatory factor for stabilization of the PsaA and PsaB proteins under such low-temperature conditions. At normal growth temperature (30 degrees C), the BtpA protein was present in the cell, and its genetic deletion caused an increase in the degradation of the PSI reaction center proteins. However, growth of Synechocystis cells at 20 degrees C or shifting of cultures grown at 30 degrees C to 20 degrees C led to a rapid accumulation of the BtpA protein, presumably to stabilize the PSI complex, by lowering the rates of degradation of the PsaA and PsaB proteins. A btpA deletion mutant strain could not grow photoautotrophically at low temperature, and exhibited rapid degradation of the PSI complex after transfer of the cells from normal to low temperature.  相似文献   

10.
11.
Recently, construction of strains of Synechocystis sp. PCC6803 having a His(6) extension (His-tag) of the carboxyl terminus of the CP47 protein has been reported (T.M. Bricker et al, Biochim. Biophys. Acta 1409 (1998) 50; M.J. Reifler et al., in: Garab, Pusztai (Eds.) Proc. XIth International Congress on Photosynthesis, 1998). While these initial reports suggest a minimal impact of the His-tag upon Photosystem (PS) II function, a more thorough analysis of the kinetic properties of the modified complex is essential. This communication reports on a more detailed kinetic analysis to assess possible perturbations of PS II due to the genetic addition of the His-tag on the CP47 protein. It was found that: (1) Patterns of flash O(2) yield exhibited normal period four oscillations and the associated fits of the Kok-Joliot S-state cycling parameters were virtually identical to the wild type; (2) O(2) release kinetics during the S(3)-S(0) transition were experimentally indistinguishable from the wild type; (3) S-state decay measurements indicate slightly faster decays of the S(2) and S(3) states compared to the wild type; (4) fluorescence measurements indicate that the kinetics of the forward reaction of electron transfer from Q(A)(-) to Q(B) and back-reactions of Q(A)(-) with PS II electron donors are similar in the His-tag and wild-type strains. It is therefore concluded that the addition of the His-tag results in a minimal perturbation of PS II function.  相似文献   

12.
We present here a simple and rapid method which allows relatively large quantities of oxygen-evolving photosystem II- (PS-II-) enriched particles to be obtained from wild-type and mutants of the cyanobacterium Synechocystis 6803. This method is based on that of Burnap et al. [Burnap, R., Koike, H., Sotiropoulou, G., Sherman, L. A., & Inoue, Y. (1989) Photosynth. Res. 22, 123-130] but is modified so that the whole preparation, from cells to PS-II particles, is achieved in 10 h and involves only one purification step. The purified preparation exhibits a 5-6-fold increase of O2-evolution activity on a chlorophyll basis over the thylakoids. The ratio of PS-I to PS-II is about 0.14:1 in the preparation. The secondary quinone electron acceptor, QB, is present in this preparation as demonstrated by thermoluminescence studies. These PS-II particles are well-suited to spectroscopic studies as demonstrated by the range of EPR signals arising from components of PS-II that are easily detectable. Among the EPR signals presented are those from a formal S3-state, attributed to an oxidized amino acid interacting magnetically with the Mn complex in Ca(2+)-deficient PS-II particles, and from S2 modified by the replacement of Ca2+ by Sr2+. Neither of these signals has been previously reported in cyanobacteria. Their detection under these conditions indicates a similar lesion caused by Ca2+ depletion in both plants and cyanobacteria. The protocol has also been applied to mutants which have site-specific changes in PS-II. Data are presented on mutants having changes on the electron donor (Y160F) and electron acceptor (G215W) side of the D2 polypeptide.  相似文献   

13.
More than one hundred mutants of Synechocystis sp. PCC 6803 impaired in photoautotrophic growth were generated by in vitro random PCR mutagenesis targeted to a region of the psbAII gene corresponding to a 210 amino acid (Ser148-Ala357) segment of the D1 protein. The 90 random mutants that could translate the full-length D1 protein carried 1-9 (on average 3.0) amino acid substitutions in the targeted region. Mutations were often found in the obligate photoheterotrophic strains at specific residues that have been reported or speculated to be important in the function of PSII, such as Y161, H198, H272, E333 and H337. This verifies the usefulness of the present method to identify functionally important residues in PSII. Other residues that were often mutated in the strains with impaired photoautotrophy included non-charged residues around the lumenal edges of transmembrane helices C, D and E, such as I192 and N296. Eleven mutants carried a single-point mutation in residues, such as Q165, Q187, W278, A294 and N298, and these identified the functional importance of these residues, most of which were on the donor side of PSII. A preliminary characterization of some of the mutants obtained in this study is provided.  相似文献   

14.
Vavilin DV  Vermaas WF 《Biochemistry》2000,39(48):14831-14838
The lumenal CD-loop region of the D2 protein of photosystem II contains residues that interact with the primary electron donor P680 and the redox active tyrosyl residue Y(D). Photosystem II properties were studied in a number of photoautotrophic mutants of Synechocystis sp. PCC 6803, most of which carried combinatorial mutations in residues 164-170, 179-186, or 187-194 of the D2 protein. To facilitate characterization of photosystem II properties in the mutants, the CD-loop mutations were introduced into a photosystem I-less background. According to variable fluorescence decay measurements in DCMU-treated cells, charge recombination of Q(A)(-) with the donor side was faster in the majority of mutants (t(1/2) = 45-140 ms) than in the control (t(1/2) = 180 ms). However, in one mutant (named C7-3), the decay of Q(A)(-) was 2 times slower than in the control (t(1/2) = 360 ms). The decay half-time of each mutant correlated with the yield of the Q-band of thermoluminescence (TL) emitted due to S(2)Q(A)(-) charge recombination. The C7-3 mutant had the highest TL intensity, whereas no Q-band was detected in the mutants with fast Q(A)(-) decay (t(1/2) = 45-50 ms). The correlated changes in the rate of recombination and in TL yield in these strains suggest the existence of a nonradiative pathway of charge recombination between Q(A)(-) and the donor side. This may involve direct electron transfer from Q(A)(-) to P680(+) in a way not leading to formation of excited chlorophyll. Many mutations in the CD-loop appear to increase the equilibrium P680(+) concentration during the lifetime of the S(2)Q(A)(-) state, for example, by making the midpoint potential of the P680(+)/P680 redox couple more negative. The nonradiative charge recombination pathway involves a low activation energy and is less temperature-dependent than the formation of excited P680 that leads to TL emission. Therefore, during the TL measurements in these mutants, the S(2)Q(A)(-) state can recombine nonradiatively before temperatures are reached at which radiative charge recombination becomes feasible. The results presented here highlight the presence of two charge recombination pathways and the importance of the CD-loop of the D2 protein in determination of the energy gap between the P680(+)S(1) and P680S(2) states.  相似文献   

15.
Yao DC  Brune DC  Vermaas WF 《FEBS letters》2012,586(2):169-173
The half-life times of photosystem I and II proteins were determined using (15)N-labeling and mass spectrometry. The half-life times (30-75h for photosystem I components and <1-11h for the large photosystem II proteins) were similar when proteins were isolated from monomeric vs. oligomeric complexes on Blue-Native gels, suggesting that the two forms of both photosystems can interchange on a timescale of <1h or that only one form of each photosystem exists in thylakoids in vivo. The half-life times of proteins associated with either photosystem generally were unaffected by the absence of Small Cab-like proteins.  相似文献   

16.
Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity.  相似文献   

17.
Photosynthetic characteristics along with phototolerance and photoinhibition of photosystem II (PS II) were monitored in Synechocystis sp. PCC 6803 wild type (KC) and its psbAII mutants viz., I6 (N322I, I326F, and F328S), G6 (N267Y), and H7 (Y254C and I314V) that have up to three point mutations, localized in the D-E loop of the D1 polypeptide of PSII reaction centre. These strains exhibited entirely different growth trends upon shifting from 30 micormol m(-2)s(-1) to high irradiance (500 micromol m(-2)s(-1) , 30 degrees C). The I6 and H7 cells grew well, whereas KC and G6 cells showed inability for cell multiplication. The photosynthetic efficiency demonstrated about 50% loss in chlorophyll fluorescence of variable yield (Fv/Fm) within 20-30 min in all mutants, whereas the wild type (KC) cells could reach the same level of loss in 2 hr. I6 and H7 cells showed continuous cell growth and maintenance under long-term exposure of high light compared to G6 mutant and wild type cells. The wild type cells showed slow decrease in their photochemical activity and Fv/Fm values, compared to mutant cells. The recovery seemed to be almost identical, and also stimulated by growth light, inspite of differential photoinhibitory behaviours. Darkness and translational inhibitor lincomycin both were found to be unassociated with the restoration of photoinhibited process of PS II.  相似文献   

18.
Carotene isomerase mutant (crtH mutant) cells of Synechocystis sp. PCC 6803 can accumulate beta-carotene under light conditions. However, the mutant cells grown under a light-activated heterotrophic growth condition contained detectable levels of neither beta-carotene nor D1 protein of the photosystem (PS) II reaction center, and no oxygen-evolving activity of PSII was detected. beta-Carotene and D1 protein appeared and a high level of PSII activity was detected after the cells were transferred to a continuous light condition. The PSI activities of thylakoid membranes from mutant cells were almost the same as those of thylakoid membranes from wild-type cells, both before and after transfer to the continuous light condition. These results suggest that beta-carotene is required for the assembly of PSII but not for that of PSI.  相似文献   

19.
Li Z  Andrews H  Eaton-Rye JJ  Burnap RL 《Biochemistry》2004,43(44):14161-14170
The H(2)O oxidizing domain of the cyanobacterial photosystem II (PSII) complex contains a low potential, c-type cytochrome termed c(550) that is essential for the in vivo stability of the PSII complex. A mutant lacking cytochrome c(550) (DeltapsbV) in Synechocystis sp. PCC6803 has been further analyzed together with a construct in which the distal axial heme iron ligand, histidine 92, has been substituted with a methionine (C550-H92M). Heme staining of SDS-PAGE showed that the C550-H92M mutation did not disturb the accumulation and heme-binding properties of the cytochrome. In DeltapsbV cells, the number of charge separating PSII centers was estimated to be 56% of the wild type, but of the existing centers, 33% lacked photooxidizable Mn ions. C550-H92M did not discernibly affect the intrinsic PSII electron-transfer kinetics compared to the wild type nor did it exhibit a significant fraction of centers lacking photooxidizable Mn; however, the number of charge separating PSII centers in mutant cells was 69% of the wild type. C550-H92M lost photoautotrophic growth ability in the absence of Ca(2+), but its growth was not affected by depletion of Cl(-), which differs from DeltapsbV. Taken together, the results suggest that in the absence of cytochrome c(550) electron transfer on the donor side is retarded perhaps at the level of Y(z) to P680(+) transfer, the heme ligand. His92 is not absolutely required for assembly of functional PSII centers; however, replacement by methionine prevents normal accumulation of PSII centers in the thylakoid membranes and alters the Ca(2+) requirement of PSII. The results are discussed in terms of current understanding of the Ca(2+) site of PSII.  相似文献   

20.
Site-directed mutations were introduced to replace D1-His198 and D2-His197 of the D1 and D2 polypeptides, respectively, of the photosystem II (PSII) reaction center of Synechocystis PCC 6803. These residues coordinate chlorophylls P(A) and P(B) which are homologous to the special pair Bchlorophylls of the bacterial reaction centers that are coordinated respectively by histidines L-173 and M-200 (202). P(A) and P(B) together serve as the primary electron donor, P, in purple bacterial reaction centers. In PS II, the site-directed mutations at D1 His198 affect the P(+)--P-absorbance difference spectrum. The bleaching maximum in the Soret region (in WT at 433 nm) is blue-shifted by as much as 3 nm. In the D1 His198Gln mutant, a similar displacement to the blue is observed for the bleaching maximum in the Q(y) region (672.5 nm in WT at 80 K), whereas features attributed to a band shift centered at 681 nm are not altered. In the Y(Z*)--Y(Z)-difference spectrum, the band shift of a reaction center chlorophyll centered in WT at 433--434 nm is shifted by 2--3 nm to the blue in the D1-His198Gln mutant. The D1-His198Gln mutation has little effect on the optical difference spectrum, (3)P--(1)P, of the reaction center triplet formed by P(+)Pheo(-) charge recombination (bleaching at 681--684 nm), measured at 5--80 K, but becomes visible as a pronounced shoulder at 669 nm at temperatures > or =150 K. Measurements of the kinetics of oxidized donor--Q(A)(-) charge recombination and of the reduction of P(+) by redox active tyrosine, Y(Z), indicate that the reduction potential of the redox couple P(+)/P can be appreciably modulated both positively and negatively by ligand replacement at D1-198 but somewhat less so at D2-197. On the basis of these observations and others in the literature, we propose that the monomeric accessory chlorophyll, B(A), is a long-wavelength trap located at 684 nm at 5 K. B(A)* initiates primary charge separation at low temperature, a function that is increasingly shared with P(A)* in an activated process as the temperature rises. Charge separation from B(A)* would be potentially very fast and form P(A)(+)B(A)(-) and/or B(A)(+)Pheo(-) as observed in bacterial reaction centers upon direct excitation of B(A) (van Brederode, M. E., et al. (1999) Proc. Natl. Acad Sci. 96, 2054--2059). The cation, generated upon primary charge separation in PSII, is stabilized at all temperatures primarily on P(A), the absorbance spectrum of which is displaced to the blue by the mutations. In WT, the cation is proposed to be shared to a minor extent (approximately 20%) with P(B), the contribution of which can be modulated up or down by mutation. The band shift at 681 nm, observed in the P(+)-P difference spectrum, is attributed to an electrochromic effect of P(A)(+) on neighboring B(A). Because of its low-energy singlet and therefore triplet state, the reaction center triplet state is stabilized on B(A) at < or =80 K but can be shared with P(A) at >80 K in a thermally activated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号