首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M She  W J Dong  P K Umeda    H C Cheung 《Biophysical journal》1997,73(2):1042-1055
The regulatory domain of troponin C (TnC) from chicken skeletal muscle was studied using genetically generated mutants which contained a single tryptophan at positions 22, 52, and 90. The quantum yields of Trp-22 are 0.33 and 0.25 in the presence of Mg2+ (2-Mg state) and Ca2+ (4-Ca state), respectively. The large quantum yield of the 2-Mg state is due to a relatively small nonradiative decay rate and consistent with the emission peak at 331 nm. The intensity decay of this state is monoexponential with a single lifetime of 5.65 ns, independent of wavelength. In the 4-Ca state, the decay is biexponential with the mean of the two lifetimes increasing from 4.54 to 4.92 ns across the emission band. The decay-associated spectrum of the short lifetime is red-shifted by 19 nm relative to the steady-state spectrum. The decay of Trp-52 is biexponential in the 2-Mg state and triexponential in the 4-Ca state. The decay of Trp-90 requires three exponential terms for a satisfactory fit, but can be fitted with two exponential terms in the 4-Ca state. The lower quantum yields (< 0.15) of these two tryptophans are due to a combination of smaller radiative and larger nonradiative decay rates. The results from Trp-22 suggest a homogeneous ground-state indole ring in the absence of bound Ca2+ at the regulatory sites and a ground-state heterogeneity induced by activator Ca2+. The Ca(2+)-induced environmental changes of Trp-52 and Trp-90 deviate from those predicted by a modeled structure of the 4-Ca state. The anisotropy decays of all three tryptophans show two rotational correlation times. The long correlation times (phi 1 = 8.1-8.3 ns) derived from Trp-22 and Trp-90 suggest an asymmetric hydrodynamic shape. TnC becomes more asymmetric upon binding activator Ca2+ (phi 1 = 10.1-11.6 ns). The values of phi 1 obtained from Trp-52 are 3-4 ns shorter than those from Trp-22 and Trp-90, and these reduced correlation times may be related to the mobility of the residue and/or local segmental flexibility.  相似文献   

2.
The light chain binding domain of rat myosin 1d consists of two IQ-motifs, both of which bind the light chain calmodulin (CaM). To analyze the Myo1d ATPase activity as a function of the IQ-motifs and Ca2+/CaM binding, we expressed and affinity purified the Myo1d constructs Myo1d-head, Myo1d-IQ1, Myo1d-IQ1.2, Myo1d-IQ2 and Myo1dDeltaLV-IQ2. IQ1 exhibited a high affinity for CaM both in the absence and presence of free Ca2+. IQ2 had a lower affinity for CaM in the absence of Ca2+ than in the presence of Ca2+. The actin-activated ATPase activity of Myo1d was approximately 75% inhibited by Ca2+-binding to CaM. This inhibition was observed irrespective of whether IQ1, IQ2 or both IQ1 and IQ2 were fused to the head. Based on the measured Ca2+-dependence, we propose that Ca2+-binding to the C-terminal pair of high affinity sites in CaM inhibits the Myo1d actin-activated ATPase activity. This inhibition was due to a conformational change of the C-terminal lobe of CaM remaining bound to the IQ-motif(s). Interestingly, a similar but Ca2+-independent inhibition of Myo1d actin-activated ATPase activity was observed when IQ2, fused directly to the Myo1d-head, was rotated through 200 degrees by the deletion of two amino acids in the lever arm alpha-helix N-terminal to the IQ-motif.  相似文献   

3.
The fluorescence of TNP-nucleotides bound to sarcoplasmic reticulum ATPase is enhanced upon formation of phosphorylated enzyme intermediate either with ATP in the presence of Ca2+ or, to a greater extent, with Pi in the absence of Ca2+. Binding of the TNP-nucleotides does not occur if the ATPase is labeled at the active site with fluorescein isothiocyanate. Addition of ADP to the TNP-nucleotide X enzyme complex phosphorylated with Pi causes dissociation of TNP-nucleotide and a proportional reduction in fluorescence. These and other kinetic observations indicate that the TNP-nucleotide exchanges with ADP following enzyme phosphorylation with ATP or occupies the ADP portion of the catalytic site following enzyme phosphorylation with Pi. This interaction with the phosphorylated site results in fluorescence enhancement of the TNP-nucleotide. Comparison of the TNP-nucleotide fluorescence features in different solvents with that of the TNP-nucleotide bound to sarcoplasmic reticulum ATPase indicates that, following phosphorylation, the binding domain excludes solvent molecules and confers restricted mobility to the TNP-nucleotide. Solvent exclusion and substrate immobilization accompany, to a greater extent, phosphorylation of the active site with Pi in the absence of Ca2+. TNP-nucleotides bound to the catalytic sites were also found to be acceptors of resonance energy transfer from enzyme tryptophan in the extramembranous domain of the ATPase which also contains the catalytic site.  相似文献   

4.
The tryptophan fluorescence emission of sarcoplasmic reticulum Ca2+-ATPase was studied both in purified ATPase vesicles and in ATPase solubilized with the nonionic detergent dodecyloctaethyleneglycolmonoether (C12E8). Fluorescence intensity changes in purified ATPase were titrated as a function of free Ca2+ in the medium. It exhibited a cooperative pattern, with a Hill number of 2.21 +/- 0.02 and K0.5 = 0.51 microM Ca2+. Upon solubilization of the ATPase, the cooperative pattern of fluorescence change was lost; the Hill number was 0.96 and K0.5 = 1.4 microM Ca2+. When solubilization was carried out in the presence of 0.5 or 1.0 mM CaCl2, followed by the titrations of fluorescence change in the micromolar Ca2+ range, the cooperative pattern was preserved under the same concentrations of C12E8 which would otherwise promote the loss in cooperativity. For the ATPase solubilized in millimolar Ca2+, the Hill number was 1.98 with a K0.5 = 1.5 microM Ca2+. The maximal amount of Ca2+ bound to the high affinity sites corresponded to approximately 1 mol of calcium/mol of polypeptide chains, both in purified ATPase vesicles and in the soluble ATPase. A model is suggested, which involves a minimum of 4 interacting Ca2+ sites (tetramers). Cooperativity is accounted for in the model by the predominance in the absence of Ca2+ of low affinity state (E') of the Ca2+ site (K'D = 5.7 x 10(-4) M), which would be congruent to 90 times more concentrated than (E), the high affinity state (KD = 1.9 x 10(-7) M). Simulations derived from this model fit the experimental data.  相似文献   

5.
Ca2+-free crystals of sarcoplasmic reticulum Ca2+-ATPase have, up until now, been obtained in the presence of inhibitors such as thapsigargin (TG), bound to the transmembrane region of this protein. Here, we examined the consequences of such binding for the protein. We found that, after TG binding, an active site ligand such as beryllium fluoride can still bind to the ATPase and change the conformation or dynamics of the cytosolic domains (as revealed by the protection afforded against proteolysis), but it becomes unable to induce any change in the transmembrane domain (as revealed by the intrinsic fluorescence of the membranous tryptophan residues). TG also obliterates the Trp fluorescence changes normally induced by binding of MgATP or metal-free ATP, as well as those induced by binding of Mg2+ alone. In the nucleotide binding domain, the environment of Lys515 (as revealed by fluorescein isothiocyanate fluorescence after specific labeling of this residue) is significantly different in the ATPase complex with aluminum fluoride and in the ATPase complex with beryllium fluoride, and in the latter case it is modified by TG. All these facts document the flexibility of the loops connecting the transmembrane and cytosolic domains in the ATPase. In the absence of active site ligands, TG protects the ATPase from cleavage by proteinase K at Thr242-Glu243, suggesting TG-induced reduction in the mobility of these loops. 2,5-Di-tert-butyl-1,4-dihydroxybenzene or cyclopiazonic acid, inhibitors which also bind in or near the transmembrane region, also produce similar overall effects on Ca2+-free ATPase.  相似文献   

6.
A Bürkli  R J Cherry 《Biochemistry》1981,20(1):138-145
Ca2+,Mg2+-dependent adenosine 5'-triphosphatase (ATPase) in sarcoplasmic reticulum vesicles is labeled with the triplet probe, 5-iodoacetamidoesin. Rotational mobility of the ATPase is investigated by measuring flash-induced transient dichroism of the eosin probe. The absorption anisotropy measured 20 mus after the exciting flash is found to be small at 37 degrees C but increases considerably with decreasing temperature and upon fixation with glutaraldehyde. A purified Ca2+,Mg2+-dependent ATPase preparation partially depleted of membrane lipids exhibits similar properties. The low value of the anisotropy at 37 degrees C is due to the existence of a fast motion which in part is assigned to independent segmental motion of the protein. This internal flexibility of the ATPase may have considerable significance for the functional properties of the enzyme. At times longer than 20 mus, the anisotropy decays with a time constant which varies from approximately 90 mus at 0 degrees C to approximately 40 mus at 37 degrees C. This decay is assigned to rotation of the ATPase about an axis normal to the plane of the membrane. There is some evidence for self-aggregation of the protein at lower temperatures.  相似文献   

7.
Using spin-labeled fatty acid derivatives and maleimide, the effect of temperature on the structural state of various parts of the lipid bilayer of sarcoplasmic reticulum (SR) membranes and the segmental motion of the Ca-ATPase molecule were investigated. The mobility of the spin probes localized in the hydrophobic zone and the outer part of the SR membrane was shown to increase with a rise in temperature from 4 to 44 degrees C, the temperature of 20 degrees C being critical for these changes. In the presence of ATP, critical changes in the spin probe mobility occur at lower temperatures, while in the presence of ATP and Ca2+ they are observed at 20 degrees C for a spin probe localized in the outer part of the SR membrane. The mobility of a spin probe localized in the hydrophobic part of the membrane increases linearly with a rise in temperature. In the absence of ligands, the segmental motion of Ca-ATPase changes linearly within a temperature range of 10-30 degrees C. However, when ATP alone or ATP and Ca2+ are simultaneously added to the incubation mixture, the protein mobility undergoes critical changes at 20 degrees C. The Arrhenius plots for ATPase activity and Ca2+ uptake rate in SR membrane preparations also have a break at 20 degrees C. It is assumed that changes in the structural state of membrane lipids produce conformational changes in the Ca-ATPase molecule; the enzyme seems to be unsensitive to the structural state of the membrane lipid matrix in the absence of the ligands.  相似文献   

8.
R J Heaslip  S Chacko 《Biochemistry》1985,24(11):2731-2736
There are conflicting reports on the effect of Ca2+ on actin activation of myosin adenosine-triphosphatase (ATPase) once the light chain is fully phosphorylated by a calcium calmodulin dependent kinase. Using thiophosphorylated gizzard myosin, Sherry et al. [Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., & Hartshorne, D. J. (1978) Biochemistry 17, 4417-4418] observed that the actin activation of ATPase was not inhibited by the removal of Ca2+. Hence, it was suggested that the regulation of actomyosin ATPase activity of gizzard myosin by calcium occurs only via phosphorylation. In the present study, phosphorylated and thiophosphorylated myosins were prepared free of kinase and phosphatase activity; hence, the ATPase activity could be measured at various concentrations of Ca2+ and Mg2+ without affecting the level of phosphorylation. The ATPase activity of myosin was activated either by skeletal muscle or by gizzard actin at various concentrations of Mg2+ and either at pCa 5 or at pCa 8. The activation was sensitive to Ca2+ at low Mg2+ concentrations with both actins. Tropomyosin potentiated the actin-activated ATPase activity at all Mg2+ and Ca2+ concentrations. The calcium sensitivity of phosphorylated and thiophosphorylated myosin reconstituted with actin and tropomyosin was most pronounced at a free Mg2+ concentration of about 3 mM. The binding of 125I-tropomyosin to actin showed that the calcium sensitivity of ATPase observed at low Mg2+ concentration is not due to a calcium-mediated binding of tropomyosin to F-actin. The actin activation of both myosins was insensitive to Ca2+ when the Mg2+ concentration was increased above 5 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The kinetics of Ca2+ activation of membrane-bound (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase EC 3.6.1.3) from human erythrocytes was studied. The ATPase from membrane prepared in the presence of 0.7-500muM Ca2+ showed positively cooperative behaviour and a Km for Ca2+ of between 1 and 4 muM. If the membranes were prepared in the absence of Ca2+ the Km increased, and an enzyme model with at least four calcium-binding sites accounted for the kinetic change assuming that one calcium-binding site decreased its affinity. Mg2+ or Mg-ATP could not replace Ca2+. Continuous-flow centrifugation involving a shear stress on membranes was necessary to obtain the high affinity ATPase activity. Using ordinary centrifugation the Ca2+-prepared membranes behaved as membranes prepared in the absence of Ca2+. The Ca2+-stimulated ATPase from membranes prepared without Ca2+ showed reduced maximum activity, but dialyzed, membrane-free hemolysates, whether prepared with Ca2+ present or not, recovered the activity when the hemolysate was present during the ATPase assay. It is suggested that the different Ca2+-affinities of the Ca2+-stimulated ATPase correspond to two different states of the calcium-pump.  相似文献   

10.
H I Stefanova  J M East  M G Gore  A G Lee 《Biochemistry》1992,31(26):6023-6031
The (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum was labeled with 4-(bromomethyl)-6,7-dimethoxycoumarin. It was shown that a single cysteine residue (Cys-344) was labeled on the ATPase, with a 25% reduction in steady-state ATPase activity and no reduction in the steady-state rate of hydrolysis of p-nitrophenyl phosphate. The fluorescence intensity of the labeled ATPase was sensitive to pH, consistent with an effect of protonation of a residue of pK 6.8. Fluorescence changes were observed on binding Mg2+, consistent with binding to a single site of Kd 4 mM. Comparable changes in fluorescence intensity were observed on binding ADP in the presence of Ca2+. Binding of AMP-PCP produced larger fluorescence changes, comparable to those observed on phosphorylation with ATP or acetyl phosphate. Phosphorylation with P(i) also resulted in fluorescence changes; the effect of pH on the fluorescence changes was greater than that on the level of phosphorylation measured directly using [32P]P(i). It is suggested that different conformational states of the phosphorylated ATPase are obtained at steady state in the presence of Ca2+ and ATP and at equilibrium in the presence of P(i) and absence of Ca2+.  相似文献   

11.
After the nucleotide binding domain in sarcoplasmic reticulum Ca2+-ATPase has been derivatized with fluorescein isothiocyanate at Lys-515, ATPase phosphorylation in the presence of a calcium gradient, with Ca2+ on the lumenal side but without Ca2+ on the cytosolic side, results in the formation of a species that exhibits exceptionally low probe fluorescence (Pick, U. (1981) FEBS Lett. 123, 131-136). We show here that, as long as the free calcium concentration on the cytosolic side is kept in the nanomolar range, this low fluorescence species is remarkably stable, even when the calcium gradient is subsequently dissipated by ionophore. This species is a Ca2+-free phosphorylated species. The kinetics of Ca2+ binding to it indicates that its transport sites are exposed to the cytosolic side of the membrane and retain a high affinity for Ca2+. Thus, in the ATPase catalytic cycle, an intrinsically transient phosphorylated species with transport sites occupied but not yet occluded must also have been stabilized by fluorescein isothiocyanate (FITC), possibly mimicking ADP. The low fluorescence mainly results from a change in FITC absorption. The Ca2+-free low fluorescence FITC-ATPase species remains stable after addition of thapsigargin in the absence or presence of decavanadate, or after solubilization with dodecylmaltoside. The remarkable stability of this phosphoenzyme species and the changes in FITC spectroscopic properties are discussed in terms of a putative FITC-mediated link between the nucleotide binding domain and the phosphorylation domain in Ca2+-ATPase, and the possible formation of a transition state-like conformation with a compact cytosolic head. These findings might open a path toward structural characterization of a stable phosphorylated form of Ca2+-ATPase for the first time, and thus to further insights into the pump's mechanism.  相似文献   

12.
Interaction of Ca2+ and Gd3+ ions with Ca(2+)-transporting ATPase of the sarcoplasmic reticulum (SR-ATPase) was analyzed. Binding of Ca2+ to the transport site caused an enhancement of intrinsic fluorescence of SR-ATPase. Gd3+ also induced fluorescence enhancement. However, the effects of Ca2+ and Gd3+ were additive rather than competitive, indicating that the Gd(3+)-binding site responsible for this enhancement is distinct from the Ca(2+)-transport site. Gd3+ ions at concentrations higher than 10 microM caused a marked fluorescence quenching, indicating an additional interaction at low-affinity binding sites. Interaction of Ca2+ with the transport site led to a quenching of fluorescence of N-(1-anilinonaphthyl-4)maleimide (ANM) covalently attached at SHN [as defined in Yasuoka-Yabe, K. & Kawakita, M. (1983) J. Biochem. 94, 665-675]. In this case the effects of Ca2+ and Gd3+ were mutually exclusive, indicating that Ca2+ and Gd3+ were competing for the same binding site (i.e. the transport site) to affect ANM fluorescence. Competition between Ca2+ and Gd3+ for the Ca(2+)-transport site was also demonstrated by direct measurement of Ca(2+)-binding using nitrocellulose membrane filters. Affinity of Gd3+ for the Ca(2+)-transport site was a little lower than that of Ca2+. Based on these results it was concluded that Gd3+ has at least three kinds of binding sites on SR-ATPase, namely the Ca(2+)-transport site, the Gd(3+)-specific high-affinity site, and a number of low-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

14.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

15.
Interaction of domains in fibronectin was observed by photometry of fluorescence polarization of three kinds of dye; [N-(1-anilinonaphthyl-4)]maleimide (ANM tau = 5 ns), [N-(3-fluoranthyl)]maleimide (FAM tau = 20 ns), and [N-(3-pyrene)]maleimide (PRM tau = 100 ns). Each dye was labeled at a free sulfhydryl group in the cell-binding domain. Neither fluorescence of ANM with short fluorescent lifetime, FAM with long lifetime, nor PRM with longer fluorescent lifetime on fibronectin depolarized as much as the free dye. It was found that each dye was firmly fixed in the cell-binding domain. When heparin or gelatin was added in the solution of PRM-fibronectin complex, the fluorescence polarization tended to increase principally by combining heparin or gelatin to fibronectin. It was found that the rotation of whole or partial fibronectin containing the cell-binding domain through fluorescent lifetime of 100 ns was suppressed by combining of heparin or gelatin to fibronectin. When heparin or gelatin was added in the solution of ANM- or FAM-fibronectin complex, on the contrary, the fluorescence polarization tended to decrease, that is, slightly depolarize through the fluorescent lifetime of 5 or 20 ns, respectively. It was found that the rotation of the cell-binding domain, or of part of the fibronectin molecule containing the domain, was slightly promoted by combining heparin or gelatin to its domain. These results indicate that an interaction of the heparin- or gelatin-binding domain with the cell-binding domain was induced by the combining of heparin or gelatin to the respective domains.  相似文献   

16.
E A Nalefski  A C Newton 《Biochemistry》2001,40(44):13216-13229
Conventional isoforms of protein kinase C (PKC) are activated when their two membrane-targeting modules, the C1 and C2 domains, bind the second messengers diacylglycerol (DG) and Ca2+, respectively. This study investigates the mechanism of Ca2+-induced binding of PKC betaII to anionic membranes mediated by the C2 domain. Stopped-flow fluorescence spectroscopy reveals that Ca2+-induced binding of the isolated C2 domain to anionic vesicles proceeds via at least two steps: (1) rapid binding of two or more Ca2+ ions to the free domain with relatively low affinity and (2) diffusion-controlled association of the Ca2+-occupied domain with vesicles. Ca2+ increases the affinity of the C2 domain for anionic membranes by both decreasing the dissociation rate constant (k(off)) and increasing the association rate constant (k(on)) for membrane binding. For binding to vesicles containing 40 mol % anionic lipid in the presence of 200 microM Ca2+, k(off) and k(on) are 8.9 s(-1) and 1.2 x 10(10) M(-1) x s(-1), respectively. The k(off) value increases to 150 s(-1) when free Ca2+ levels are rapidly reduced, decreasing the average lifetime of the membrane-bound C2 domain (tau = k(off)(-1)) from 110 ms in the presence of Ca2+ to 6.7 ms when Ca2+ is rapidly removed. Experiments addressing the role of electrostatic interactions reveal that they stabilize either the initial C2 domain-membrane encounter complex or the high-affinity membrane-bound complex. Specifically, lowering the phosphatidylserine mole fraction or including MgCl2 in the binding reaction decreases the affinity of the C2 domain for anionic vesicles by both reducing k(on) and increasing k(off) measured in the presence of 200 microM Ca2+. These species do not affect the k(off) value when Ca2+ is rapidly removed. Studies with PKC betaII reveal that Ca2+-induced binding to membranes by the full-length protein proceeds minimally via two kinetically resolvable steps: (1) a rapid bimolecular association of the enzyme with vesicles near the diffusion-controlled limit and, most likely, (2) subsequent conformational changes of the membrane-bound enzyme. As is the case for the C2 domain, k(off) for full-length PKC betaII increases when Ca2+ is rapidly removed, reducing tau from 11 s in the presence of Ca2+ to 48 ms in its absence. Thus, both the C2 domain and the slow conformational change prolong the lifetime of the PKC betaII-membrane ternary complex in the presence of Ca2+, with rapid membrane release triggered by removal of Ca2+. These results provide a molecular basis for cofactor regulation of PKC whereby the C2 domain searches three-dimensional space at the diffusion-controlled limit to target PKC to relatively common anionic phospholipids, whereupon a two-dimensional search is initiated by the C1 domain for the more rare, membrane-partitioned DG.  相似文献   

17.
The pleckstrin homology (PH) domains of phospholipase C (PLC)-delta1 and a related catalytically inactive protein, p130, both bind inositol phosphates and inositol lipids. The binding to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by PLC-delta1 is proposed to be the critical interaction required for membrane localization to where the substrate resides; it is also required for the Ca(2+)-dependent activation of PLC-delta1 observed in the permeabilized cells. In the proximity of the PH domain, both PLC-delta1 and p130 possess the EF-hand domain, containing classical motifs implicated in calcium binding. Therefore, in the present study we examined whether the binding of the PH domain to PtdIns(4,5)P2 is regulated by changes in free Ca2+ concentration within the physiological range. A Ca2+ dependent increase in the binding to PtdIns(4,5)P2 was observed with a full-length PLC-delta1, while the isolated PH domain did not show any Ca2+ dependence. However, the connection of the EF-hand motifs to the PH domain restored the Ca2+ dependent increase in binding, even in the absence of the C2 domain. The p130 protein showed similar properties to PLC-delta1, and the EF-hand motifs were again required for the PH domain to exhibit a Ca2+ dependent increase in the binding to PtdIns(4,5)P2. The isolated PH domains from several other proteins which have been demonstrated to bind PtdIns(4,5)P2 showed no Ca2+ dependent enhancement of binding. However, when present within a chimera also containing PLC-delta1 EF-hand motifs, the Ca2+ dependent binding was again observed. These results suggest that the binding of Ca2+ to the EF-hand motifs can modulate binding to PtdIns(4,5)P2 mediated by the PH domain.  相似文献   

18.
The effects of nucleotides and Ca2+ on the intrinsic tryptophan fluorescence of molluscan myosin and its proteolytic fragments were studied. By using these proteins from the scallop, Pecten maximus, the existence of two distinct tryptophan-containing domains was established, which respond independently to ATP and Ca2+-specific binding. The latter is located in the 'neck' region of the myosin, which constitutes the regulatory domain. Subfragment 1, lacking the regulatory domain, responded only to ATP binding. On the other hand a tryptic fragment comprising the regulatory domain responded only to Ca2+ binding. Subfragment 1, containing the regulatory domain, responded to both ATP and Ca2+, but its ATPase activity was Ca2+-insensitive. By contrast, the ATPase activity of HMM was Ca2+-sensitive. Increasing the ionic strength had a detrimental effect on Ca2+-sensitivity, and fluorescence studies on solubilized myosin were therefore of limited value. Myosin and its fragments from other molluscan species which were investigated produced similar changes to those of Pectan maximus.  相似文献   

19.
We studied the rotational mobility of the Ca2+ + Mg2+-activated ATPase in skeletal-muscle sarcoplasmic-reticulum vesicles, using time-resolved measurements of the depolarization of laser-flash-excited phosphorescence of the extrinsic triplet probe erythrosin. Our results are in general agreement with those of others [Bürkli & Cherry (1981) Biochemistry 20, 138-145] obtained by linear dichroism methods. In addition, we directly observed fast depolarization in the 1-5 microseconds time range that can be attributed to limited motion of part of the protein (segmental motion). Temperature-dependent changes in phosphorescence anisotropy indicated the onset of a conformational change in structure of the Ca2+ + Mg2+-activated ATPase at 11-13 degrees C. We also describe the synthesis of 5-iodoacetamidoerythrosin.  相似文献   

20.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号