首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the biological importance of sulfated oligosaccharides has been widely recognized, there are only a few reports that describe detailed structures of sulfated N-glycans. This is largely due to the lack of a convenient method to identify structures of sulfated glycans found in low incidence. Here we develop multidimensional high performance liquid chromatography (HPLC) mapping methods for rapid and convenient identification of sulfated N-glycans. By using adequate quantities of sulfated N-glycans derived from LS12 cells, which are transfected with sulfotransferase cDNA, 40 different sulfated glycans have been successfully mapped. Furthermore, we have applied the HPLC data to identification of isomeric products resulting from an enzymatic reaction of N-acetylglucosamine 6-O-sulfotransferase-1 in vitro and revealed that this enzyme preferentially catalyzes sulfation of the GlcNAcbeta1-->2Manalpha1-->3Man branch in a biantennary acceptor.  相似文献   

2.
The egg jelly coats of sea urchins contain sulfated fucans which bind to a sperm surface receptor glycoprotein to initiate the signal transduction events resulting in the sperm acrosome reaction. The acrosome reaction is an ion channel regulated exocytosis which is an obligatory event for sperm binding to, and fusion with, the egg. Approximately 90% of individual females of the sea urchin Strongylocentrotus purpuratus spawned eggs having only one of two possible sulfated fucan electrophoretic isotypes, a slow migrating (sulfated fucan I), or a fast migrating (sulfated fucan II) isotype. The remaining 10% of females spawned eggs having both sulfated fucan isotypes. The two sulfated fucan isotypes were purified from egg jelly coats and their structures determined by NMR spectroscopy and methylation analysis. Both sulfated fucans are linear polysaccharides composed of 1-->3-linked alpha-L-fucopyranosyl units. Sulfated fucan I is entirely sulfated at the O -2 position but with a heterogeneous sulfation pattern at O -4 position. Sulfated fucan II is composed of a regular repeating sequence of 3 residues, as follows: [3-alpha-L-Fuc p - 2,4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)-1-->3-alpha-L-Fuc p -4(OSO3)- 1]n. Both purified sulfated fucans have approximately equal potency in inducing the sperm acrosome reaction. The significance of two structurally different sulfated fucans in the egg jelly coat of this species could relate to the finding that the sperm receptor protein which binds sulfated fucan contains two carbohydrate recognition modules of the C-type lectin variety which differ by 50% in their primary structure.   相似文献   

3.
Sulfated polysaccharides from egg jelly are the molecules responsible for inducing the sperm acrosome reaction in sea urchins. This is an obligatory event for sperm binding to, and fusion with, the egg. The sulfated polysaccharides from sea urchins have simple, well defined repeating structures, and each species represents a particular pattern of sulfate substitution. Here, we examined the egg jellies of the sea urchin sibling species Strongylocentrotus droebachiensis and Strongylocentrotus pallidus. Surprisingly, females of S. droebachiensis possess eggs containing one of two possible sulfated fucans, which differ in the extent of their 2-O-sulfation. Sulfated fucan I is mostly composed of a regular sequence of four residues ([4-alpha-l-Fucp-2(OSO3)-1-->4-alpha-l-Fucp-2(OSO3)-1-->4-alpha-l-Fucp-1-->4-alpha-l-Fucp-1]n), whereas sulfated fucan II is a homopolymer of 4-alpha-l-Fucp-2(OSO3)-1 units. Females of S. pallidus contain a single sulfated fucan with the following repeating structure: [3-alpha-l-Fucp-2(OSO3)-1-->3-alpha-l-Fucp-2(OSO3)-1-->3-alpha-l-Fucp-4(OSO3)-1-->3-alpha-l-Fucp-4(OSO3)-1]n. The egg jellies of these two species of sea urchins induce the acrosome reaction in homologous (but not heterologous) sperm. Therefore, the fine structure of the sulfated alpha-fucans from the egg jellies of S. pallidus and S. droebachiensis, which differ in their sulfation patterns and in the position of their glycosidic linkages, ensures species specificity of the sperm acrosome reaction and prevents interspecies crosses. In addition, our observations allow a clear appreciation of the common structural features among the sulfated polysaccharides from sea urchin egg jelly and help to identify structures that confer finer species specificity of recognition in the acrosome reaction.  相似文献   

4.
The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In the accompanying paper (Green, E.D., and Baenziger, J.U. (1987) J. Biol. Chem. 262, 25-35), we elucidated the structures of the anionic asparagine-linked oligosaccharides found on the bovine, ovine, and human pituitary glycoprotein hormones. In this study, we determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear alpha-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by greater than 10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (alpha 2,3 versus alpha 2,6). In addition to differences in the proportion of sulfated and sialylated structures on LH and FSH, there were site-specific variations in the amount of mono- and disulfated oligosaccharides at different glycosylation sites on LH alpha-beta dimers. The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity.  相似文献   

5.
Tenascin-R (TN-R) is a member of the tenascin family of multidomain matrix glycoproteins that is expressed exclusively in the central nervous system by oligodendrocytes and small neurons during postnatal development and in the adult. TN-R contributes to the regulation of axon extension and regeneration, neurite formation and synaptogenesis, and neuronal growth and migration. TN-R can be modified with three distinct sulfated oligosaccharide structures: HNK-1 (SO(4)-3-GlcUAbeta1,3Galbeta1,4GlcNAc), GalNAc-4-SO(4), and chondroitin sulfate. We have determined that TN-R expressed in dendrite-rich regions of the rat cerebellum, hippocampus, and cerebral cortex is one of the major matrix glycoproteins that bears N-linked carbohydrates terminating with beta1,4-linked GalNAc-4-SO(4). The syntheses of these unique sulfated structures on TN-R are differentially regulated. Levels of HNK-1 on TN-R rise and fall in parallel to the levels of TN-R during postnatal development of the cerebellum. In contrast, levels of GalNAc-4-SO(4) are regulated independently from those of TN-R, rising late in cerebellar development and continuing into adulthood. As a result, the pattern of TN-R modification with distinct sulfated carbohydrate structures changes dramatically over the course of postnatal cerebellar development in the rat. Because TN-R interacts with a number of different matrix components and, depending on the circumstances, can either activate or inhibit neurite outgrowth, the highly regulated addition of these unique sulfated structures may modulate the adhesive properties of TN-R over the course of development and during synapse maintenance. In addition, the 160-kDa form of TN-R is particularly enriched for terminal GalNAc-4-SO(4) later in development and in the adult, suggesting additional levels of regulation.  相似文献   

6.
The green algae of the genus Codium have recently been demonstrated to be an important source of sulfated galactans from the marine environment. Here, a sulfated galactan was isolated from the species Codium isthmocladum and its structure was studied by a combination of chemical analyses and NMR spectroscopy. Two fractions (SG 1, approximately 14 kDa, and SG 2, approximately 20 kDa) were derived from this highly polydisperse and heterogeneous polysaccharide. Both exhibited similar structures in (1)H 1D NMR spectra. The structural features of SG 2 and its desulfated derivative were analyzed by COSY, TOCSY, DEPT-HSQC, HSQC, and HMBC. This sulfated galactan is composed preponderantly of 4-sulfated, 3-linked beta-D-galactopyranosyl units. In minor amounts, it is sulfated and glycosylated at C-6. Pyruvate groups are also found, forming five-membered cyclic ketals as 3,4-O-(1'carboxy)-ethylidene-beta-D-galactose residues. A comparison of sulfated galactans from different marine taxonomic groups revealed similar backbones of 3-beta-D-Galp-1.  相似文献   

7.
The structures of high molecular weight sulfated oligosaccharide chains in mucins purified from the sputum of a patient with cystic fibrosis and blood group H determinant were established. Reduced oligosaccharides released by treatment with alkaline borohydride were separated by ion exchange chromatography on DEAE-Agarose and a fraction containing multisulfated chains was further purified by lectin affinity chromatography to completely remove small amounts of sialylated chains. A major sulfated oligosaccharide fraction containing chains with an average of 160 to 200 sugar residues was isolated by gel filtration on BioGel P-10 columns and individual subfractions were characterized by methylation analysis, periodate oxidation and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GldNAc in a ratio of 1:2:2.1 and only one galactosaminitol residue for every 160-to 200 sugar residues. The average molecular weight of oligosaccharide chains in these fractions was between 27,000 and 40,000 daltons. Structural analysis showed that these high molecular weight chains contained varying amounts of the repeating unit shown in the following oligosaccharide. Only one in about every 10 repeating units contained sulfate esters.Several shorter chains which contain 2 to 3 sulfate esters were also isolated from this multisulfated oligosaccharide fraction. The structures proposed for these oligosaccharides indicate that they are lower molecular weight chains with the same general structure as those found in the high molecular weight sulfated oligosaccharides. Taken collectively, the results of these studies show that a major sulfated oligosaccharide fraction in resporatory mucin purified from the mucus of patients with cystic fibrosis contains high molecular weight branched chains that consist of a repeating oligosaccharide sequence with sulfate linked to the 6 positions of galactose and possibly GlcNAc residues in the side chains.  相似文献   

8.
Heparan sulfate (HS) is a randomly sulfated polysaccharide that is present on the cell surface and in the extracellular matrix. The sulfated structures of HS were synthesized by multiple HS sulfotransferases, thereby regulating various activities such as growth factor signaling, cell differentiation, and tumor metastasis. Therefore, if the sulfated structures of HS could be artificially controlled, those manipulations would help to understand the various functions depending on HS. However, little knowledge is currently available to realize the mechanisms controlling the expression of such enzymes. In this study, we found that the ratio of 6-O-sulfated disaccharides increased at 3?h after adrenaline stimulation in mouse fibroblast cells. Furthermore, adrenaline-induced up-regulation of HS 6-O-sulfotransferase-1 (6-OST-1) was controlled by Src-ERK1/2 signaling pathway. Finally, inhibiting the signaling pathways for 6-OST-1 intentionally suppressed the adrenaline-induced structural alteration of HS. These observations provide fundamental insights into the understanding of structural alterations in HS by extracellular cues.  相似文献   

9.
Sulfated fucans from marine invertebrates have simple, linear structures, composed of repeating units of oligosaccharides. Most of these polysaccharides contain 3-linked fucosyl units, but each species of invertebrate has a specific pattern of sulfation. No specific enzyme able to cleave or to desulfate these polysaccharides has been described yet. Therefore, we employed an alternative approach, based on mild acid hydrolysis, in an attempt to obtain low molecular-weight derivatives from sulfated fucans. Surprisingly, we observed that sulfated fucans from Lytechinus variegatus and Strongylocentrotus pallidus (but not the sulfated fucans from other species) yield by mild acid hydrolysis oligosaccharides with well-defined molecular size as shown by narrow bands in polyacrylamide gel electrophoresis (PAGE). The sulfated oligosaccharides obtained by mild acid hydrolysis were purified by gel-filtration chromatography, and their structures were identified by (1)H-nuclear magnetic resonance (NMR) spectroscopy, revealing an identical chemical composition for all oligosaccharides. When we followed the acid hydrolysis by (1)H-NMR spectroscopy, we found that a selective 2-desulfation occurs in the fucans from S. pallidus and from L. variegatus. The reaction has two stages. Initially, 2-sulfate esters at specific sites are removed. Then the desulfated units are cleaved, yielding oligosaccharides with well-defined molecular size. The apparent requirement for the selective 2-desulfation is the occurrence of an exclusively 2-sulfated fucosyl unit linked to or preceded by a 4-sulfated residue. Thus, a homofucan from Strongylocentrotus franciscanus resists desulfation by mild acid hydrolysis, because it lacks the neighboring 4-sulfated unit. Overall, our results show a new approach for desulfating sulfated fucans at specific sites and obtaining tailored sulfated oligosaccharides.  相似文献   

10.
Pomin VH  Mourão PA 《Glycobiology》2008,18(12):1016-1027
Sulfated fucans and galactans are strongly anionic polysaccharides found in marine organisms. Their structures vary among species, but their major features are conserved among phyla. Sulfated fucans are found in marine brown algae and echinoderms, whereas sulfated galactans occur in red and green algae, marine angiosperms, tunicates (ascidians), and sea urchins. Polysaccharides with 3-linked, beta-galactose units are highly conserved in some taxonomic groups of marine organisms and show a strong tendency toward 4-sulfation in algae and marine angiosperms, and 2-sulfation in invertebrates. Marine algae mainly express sulfated polysaccharides with complex, heterogeneous structures, whereas marine invertebrates synthesize sulfated fucans and sulfated galactans with regular repetitive structures. These polysaccharides are structural components of the extracellular matrix. Sulfated fucans and galactans are involved in sea urchin fertilization acting as species-specific inducers of the sperm acrosome reaction. Because of this function the structural evolution of sulfated fucans could be a component in the speciation process. The algal and invertebrate polysaccharides are also potent anticoagulant agents of mammalian blood and represent a potential source of compounds for antithrombotic therapies.  相似文献   

11.
During the last decade brown seaweeds attracted much attention as a source of polysaccharides, namely laminarans, alginic acids, and sulfated polysaccharides—fucoidans, with various structures and biological activities.In this study, sulfated polysaccharides were isolated from brown seaweeds Saccharina japonica (formerly named Laminaria) and Undaria pinnatifida and their antitumor activity was tested against human breast cancer T-47D and melanoma SK-MEL-28 cell lines.The sulfated polysaccharide form S. japonica was highly branched partially acetylated sulfated galactofucan, built up of (1→3)-α-l-fucose residues. The sulfated polysaccharide from U. pinnatifida was partially acetylated highly sulfated galactofucan consisting of (1→3)- or (1→3);(1→4)-α-l-fucose residues.Fucoidans from S. japonica and U. pinnatifida distinctly inhibited proliferation and colony formation in both breast cancer and melanoma cell lines in a dose-dependent manner. These results indicated that the use of sulfated polysaccharides from brown seaweeds S. japonica and U. pinnatifida might be a potential approach for cancer treatment.  相似文献   

12.
The O-glycosidically linked carbohydrate units of ovomucin were released from serine and threonine in peptide as oligosaccharide chains by alkali treatment with and without borohydride. Two sulfated oligosaccharides were fractionated by using gel filtration and ion-exchange chromatography. The yield of sulfated oligosaccharides released by alkali treatment was higher in the presence of borohydride than in the absence of borohydride. The sulfated oligosaccharides released by alkali treatment with borohydride were as follows: an oligosaccharide composed of N-acetylgalactosaminitol, galactose, N-acetylneuraminic acid and sulfate in a molar ratio of about 1: 1: 1: 1 and another oligosaccharide in a molar ratio of about 1:1: 0.6: 0.5.  相似文献   

13.
The sulfated polysaccharides that occur in the tunic of ascidians differ markedly in molecular weight and chemical composition. A high molecular weight fraction (F-1), which has a high galactose content and a strong negative optical rotation, is present in all species. Several structural differences were observed among the F-1 fractions obtained from three species of ascidians that were studied in detail. Large numbers of alpha-L-galactopyranose residues sulfated at position 3 and linked glycosidically through position 1----4 are present in F-1 from all three ascidians. However, alpha-L-galactopyranose units, 1----3-linked and partially sulfated at position 4, comprise about half of the sugar units in the central core of F-1 from Ascidian nigra. In addition, L-galactopyranose nonreducing end units occur in F-1 from Styela plicata and A. nigra, but comprise only a minor fraction of F-1 from Clavelina sp. The combination of these various component units gives a complex structure for F-1 from S. plicata and A. nigra, whereas F-1 from Clavelina sp. possesses a simpler structure. The structures of these ascidian glycans are unique among all previously described sulfated polysaccharides, since they are highly branched (except that from Clavelina sp), sulfated at position 3, and contain large amounts of L-galactose without its D-enantiomorph. These data show unusual examples of polyanionic glycans with structural function in animal tissues.  相似文献   

14.
Carbohydrate chip technology has a great potential for the high-throughput evaluation of carbohydrate-protein interactions. Herein, we report syntheses of novel sulfated oligosaccharides possessing heparin and heparan sulfate partial disaccharide structures, their immobilization on gold-coated chips to prepare array-type Sugar Chips, and evaluation of binding potencies of proteins by surface plasmon resonance (SPR) imaging technology. Sulfated oligosaccharides were efficiently synthesized from glucosamine and uronic acid moieties. Synthesized sulfated oligosaccharides were then easily immobilized on gold-coated chips using previously reported methods. The effectiveness of this analytical method was confirmed in binding experiments between the chips and heparin binding proteins, fibronectin and recombinant human von Willebrand factor A1 domain (rh-vWf-A1), where specific partial structures of heparin or heparan sulfate responsible for binding were identified.  相似文献   

15.
The egg jellies of sea urchins contain sulfated polysaccharides with unusual structures, composed of linear chains of l-fucose or l-galactose with well-defined repetitive units. The specific pattern of sulfation and the position of the glycosidic bond vary among sulfated polysaccharides from different species. These polysaccharides show species specificity in inducing the acrosome reaction, which is a critical event for fertilization. Females of the sea urchin Lytechinus variegatus spawn eggs containing a sulfated fucan with the repetitive sequence [3-alpha-L-Fucp-2(OSO(3))-1 --> 3-alpha-L-Fucp-4(OSO(3))-1 --> 3-alpha-L-Fucp-2,4(OSO(3))-1 --> 3-alpha-L-Fucp-2(OSO(3))-1](n). We now observe that, close to winter, a period of decreased fertility for the sea urchin, the females synthesize a distinct sulfated fucan with a simple structure, composed of 4-sulfated, 3-linked alpha-fucose residues. This sulfated fucan is inactive when tested in vitro for the acrosome reaction using homologous sperm. The amount of egg jellies spawned by females (and their constituent sulfated polysaccharides) varied greatly throughout the year. Apparently, there is a correlation between the temperature of the sea water and the expression of the 4-sulfated, 3-linked sulfated fucan. Overall, we described the occurrence of two isotypes of sulfated fucan in the egg jelly of the sea urchin L. variegatus, which differ in their biological activity and may be involved in the periodicity of the reproductive cycle of the invertebrate.  相似文献   

16.
The effect of sulfated modification on polysaccharides from Hypsizigus marmoreus was examined by determining their molecular structures and bioactivities. The sulfation, which was implemented by using an orthogonal array design, produced polysaccharides with varying degrees of substitution (DS) ranging from 0.11 to 1.06. The sulfated polysaccharides exhibited a lower average molecular weight (M w) and considerably higher radius of gyration (R g) than those of native polysaccharide, suggesting that the conformation of the sulfated polysaccharides had been changed towards a more extended type. The inhibitory activity toward cancer cell growth was enhanced by treating with the sulfated polysaccharides by up to 34%, as compared to the native polysaccharide. In addition, treating with the sulfated polysaccharides increased the nitric oxide (NO) and cytokine (IL-1β and TNF-α) release to levels comparable to those detected in the positive control, lipopolysaccharide (LPS), suggesting that the sulfated polysaccharides might have strong immunomodulatory activity.  相似文献   

17.
Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.  相似文献   

18.
MDCK (Madin-Darby canine kidney) cells infected with the NWS strain of influenza virus incorporate 35SO4 into complex types of oligosaccharides of the N-linked glycoproteins. On the other hand, when these virus-infected MDCK cells are incubated in the presence of swainsonine, an inhibitor of the processing mannosidase II, approximately 40-80% of the total [35S]glycopeptides were of the hybrid types of structures. Thus, these sulfated, hybrid types of glycopeptides were completely susceptible to digestion by endoglucosaminidase H, whereas the sulfated glycopeptides from infected cells incubated without swainsonine were completely resistant to endo-beta-N-acetylglucosaminidase H. When virus-infected MDCK cells were incubated in the presence of castanospermine, an inhibitor of the processing glucosidase I, the N-linked glycopeptides contained mostly oligosaccharide chains of the Glc3Man7-9GlcNAc2 types of structures, and these oligosaccharides were devoid of sulfate. Structural analysis of these abnormally processed oligosaccharides produced in the presence of swainsonine or castanospermine indicated that they differed principally in the processing of one oligosaccharide branch as indicated by the structures shown below. They also differed in that only the swainsonine-induced structures were sulfated. These data indicate that removal of glucose units and perhaps other processing steps are necessary before sulfate residues can be added. (Formula: see text).  相似文献   

19.
Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) from pituitary and chorionic gonadotropin (CG) from placenta are a family of closely related glycoproteins. Each hormone is a heterodimer, consisting of an alpha- and a beta-subunit. Within an animal species, the alpha-subunits of all four glyco-protein hormones have an identical amino acid sequence, whereas each beta-subunit is distinct and confers hormone-specific features to the heterodimer. LH and FSH are synthesized within the same cell, the gonadotroph of the anterior pituitary, but are predominantly stored in separate secretory granules. We have characterized the asparagine-linked oligosaccharides on bovine, ovine and human LH, FSH and TSH. The various pituitary hormones were found to contain unique sulfated oligosaccharides with the terminal sequence SO4-4GalNAc beta 1----4GlcNAc beta 1----2Man alpha, sialylated oligosaccharides with the terminal sequence SA alpha Gal beta GlcNAc beta Man alpha, or both sulfated and sialylated structures. Despite synthesis of LH and FSH in the same pituitary cell, sulfated oligosaccharides predominate on LH while sialylated oligosaccharides predominate on FSH for all three animal species. We have examined the reactions leading to synthesis of the sulfated oligosaccharides to determine which steps are hormone specific. The sulfotransferase is oligosaccharide specific, requiring only the sequence GalNAc beta 1----4GlcNAc beta 1----2Man alpha. In contrast, the GalNAc-transferase appears to be protein specific, accounting for the preferential addition of GalNAc to LH, TSH, and free (uncombined) alpha-subunits compared with FSH and other pituitary glycoproteins. The predominance of sulfated oligosaccharide structures on LH may account for sorting of LH and FSH into separate secretory granules. Differences in sulfation and sialylation of LH, FSH and TSH may also play a role in the regulation of hormone bioactivity.  相似文献   

20.
Minor sulfated saikosaponins from the aerial parts of Bupleurum rigidum L   总被引:1,自引:0,他引:1  
Five new sulfated saikosaponins (Sandrosaponins II-VI) were isolated as minor components from the aerial parts of Bupleurum rigidum L. Their structures have been established by 1D and 2D-NMR techniques, FABMS, and chemical methods. ,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号