首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depolarization of sodium channels initiates at least three gating pathways: activation, fast inactivation, and slow inactivation. Little is known about the voltage sensors for slow inactivation, a process believed to be separate from fast inactivation. Covalent modification of a cysteine substituted for the third arginine (R1454) in the S4 segment of the fourth domain (R3C) with negatively charged methanethiosulfonate-ethylsulfonate (MTSES) or with positively charged methanethiosulfonate-ethyltrimethylammonium (MTSET) produces a marked slowing of the rate of fast inactivation. However, only MTSES modification produces substantial effects on the kinetics of slow inactivation. Rapid trains of depolarizations (2-20 Hz) cause a reduction of the peak current of mutant channels modified by MTSES, an effect not observed for wild-type or unmodified R3C channels, or for mutant channels modified by MTSET. The data suggest that MTSES modification of R3C enhances entry into a slow-inactivated state, and also that the effects on slow inactivation are independent of alterations of either activation or fast inactivation. This effect of MTSES is observed only for cysteine mutants within the middle of this S4 segment, and the data support a helical secondary structure of S4 in this region. Mutation of R1454 to the negatively charged residues aspartate or glutamate cannot reproduce the effects of MTSES modification, indicating that charge alone cannot account for these results. A long-chained derivative of MTSES has similar effects as MTSES, and can produce these effects on a residue that does not show use-dependent current reduction after modification by MTSES, suggesting that the sulfonate moiety can reach a critical site affecting slow inactivation. The effects of MTSES on R3C are partially counteracted by a point mutation (W408A) that inhibits slow inactivation. Our data suggest that a region near the midpoint of the S4 segment of domain 4 plays an important role in slow inactivation.  相似文献   

2.
The Ca(2+)-activated K+ (BK) channel alpha-subunit contains many cysteine residues within its large COOH-terminal tail domain. To probe the function of this domain, we examined effects of cysteine-modifying reagents on channel gating. Application of MTSET, MTSES, or NEM to mSlo1 or hSlo1 channels changed the voltage and Ca2+ dependence of steady-state activation. These reagents appear to modify the same cysteines but have different effects on function. MTSET increases I(K) and shifts the G(K)-V relation to more negative voltages, whereas MTSES and NEM shift the G(K)-V in the opposite direction. Steady-state activation was altered in the presence or absence of Ca2+ and at negative potentials where voltage sensors are not activated. Combinations of [Ca2+] and voltage were also identified where P(o) is not changed by cysteine modification. Interpretation of our results in terms of an allosteric model indicate that cysteine modification alters Ca2+ binding and the relative stability of closed and open conformations as well as the coupling of voltage sensor activation and Ca2+ binding and to channel opening. To identify modification-sensitive residues, we examined effects of MTS reagents on mutant channels lacking one or more cysteines. Surprisingly, the effects of MTSES on both voltage- and Ca(2+)-dependent gating were abolished by replacing a single cysteine (C430) with alanine. C430 lies in the RCK1 (regulator of K+ conductance) domain within a series of eight residues that is unique to BK channels. Deletion of these residues shifted the G(K)-V relation by > -80 mV. Thus we have identified a region that appears to strongly influence RCK domain function, but is absent from RCK domains of known structure. C430A did not eliminate effects of MTSET on apparent Ca2+ affinity. However an additional mutation, C615S, in the Haem binding site reduced the effects of MTSET, consistent with a role for this region in Ca2+ binding.  相似文献   

3.
Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis   总被引:6,自引:0,他引:6  
The substituted cysteine accessibility method (SCAM) was used to map the external vestibule and the pore region of the ECaC-TRPV5 calcium-selective channel. Cysteine residues were introduced at 44 positions from the end of S5 (Glu515) to the beginning of S6 (Ala560). Covalent modification by positively charged MTSET applied from the external medium significantly inhibited whole cell currents at 15/44 positions. Strongest inhibition was observed in the S5-linker to pore region (L520C, G521C, and E522C) with either MTSET or MTSES suggesting that these residues were accessible from the external medium. In contrast, the pattern of covalent modification by MTSET for residues between Pro527 and Ile541 was compatible with the presence of a alpha-helix. The absence of modification by the negatively charged MTSES in that region suggests that the pore region has been optimized to favor the entrance of positively charged ions. Cysteine mutants at positions -1, 0, +1, +2 around Asp542 (high Ca2+ affinity site) were non-functional. Whole cell currents of cysteine mutants at +4 and +5 positions were however covalently inhibited by external MTSET and MTSES. Altogether, the pattern of covalent modification by MTS reagents globally supports a KcsA homology-based three-dimensional model whereby the external vestibule in ECaC-TRPV5 encompasses three structural domains consisting of a coiled structure (Glu515 to Tyr526) connected to a small helical segment of 15 amino acids (527PTALFSTFELFLT539) followed by two distinct coiled structures Ile540-Pro544 (selectivity filter) and Ala545-Ile557 before the beginning of S6.  相似文献   

4.
KCNQ1 voltage-gated K(+) channels assemble with the family of KCNE type I transmembrane peptides to afford membrane-embedded complexes with diverse channel gating properties. KCNQ1/KCNE1 complexes generate the very slowly activating cardiac I(Ks) current, whereas assembly with KCNE3 produces a constitutively conducting complex involved in K(+) recycling in epithelia. To determine whether these two KCNE peptides influence voltage sensing in KCNQ1 channels, we monitored the position of the S4 voltage sensor in KCNQ1/KCNE complexes using cysteine accessibility experiments. A panel of KCNQ1 S4 cysteine mutants was expressed in Xenopus oocytes, treated with the membrane-impermeant cysteine-specific reagent 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and the voltage-dependent accessibility of each mutant was determined. Of these S4 cysteine mutants, three (R228C, G229C, I230C) were modified by MTSET only when KCNQ1 was depolarized. We then employed these state-dependent residues to determine how assembly with KCNE1 and KCNE3 affects KCNQ1 voltage sensor equilibrium and equilibration rates. In the presence of KCNE1, MTSET modification rates for the majority of the cysteine mutants were approximately 10-fold slower, as was recently reported to indicate that the kinetics of the KCNQ1 voltage sensor are slowed by KCNE1 (Nakajo, K., and Y. Kubo. 2007 J. Gen. Physiol. 130:269-281). Since MTS modification rates reflect an amalgam of reagent accessibility, chemical reactivity, and protein conformational changes, we varied the depolarization pulse duration to determine whether KCNE1 slows the equilibration rate of the voltage sensors. Using the state-dependent cysteine mutants, we determined that MTSET modification rates were essentially independent of depolarization pulse duration. These results demonstrate that upon depolarization the voltage sensors reach equilibrium quickly in the presence of KCNE1 and the slow gating of the channel complex is not due to slowly moving voltage sensors. In contrast, all cysteine substitutions in the S4 of KCNQ1/KCNE3 complexes were freely accessible to MTSET independent of voltage, which is consistent with KCNE3 shifting the voltage sensor equilibrium to favor the active state at hyperpolarizing potentials. In total, these results suggest that KCNE peptides differently modulate the voltage sensor in KCNQ1 K(+) channels.  相似文献   

5.
Voltage-gated ion channels respond to changes in the transmembrane voltage by opening or closing their ion conducting pore. The positively charged fourth transmembrane segment (S4) has been identified as the main voltage sensor, but the mechanisms of coupling between the voltage sensor and the gates are still unknown. Obtaining information about the location and the exact motion of S4 is an important step toward an understanding of these coupling mechanisms. In previous studies we have shown that the extracellular end of S4 is located close to segment 5 (S5). The purpose of the present study is to estimate the location of S4 charges in both resting and activated states. We measured the modification rates by differently charged methanethiosulfonate regents of two residues in the extracellular end of S5 in the Shaker K channel (418C and 419C). When S4 moves to its activated state, the modification rate by the negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) increases significantly more than the modification rate by the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate, bromide (MTSET(+)). This indicates that the positive S4 charges are moving close to 418C and 419C in S5 during activation. Neutralization of the most external charge of S4 (R362), shows that R362 in its activated state electrostatically affects the environment at 418C by 19 mV. In contrast, R362 in its resting state has no effect on 418C. This suggests that, during activation of the channel, R362 moves from a position far away (>20 A) to a position close (8 A) to 418C. Despite its close approach to E418, a residue shown to be important in slow inactivation, R362 has no effect on slow inactivation or the recovery from slow inactivation. This refutes previous models for slow inactivation with an electrostatic S4-to-gate coupling. Instead, we propose a model with an allosteric mechanism for the S4-to-gate coupling.  相似文献   

6.
The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4) and S5-S6 in Domain 1 (D1) and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal muscle voltage-gated sodium channel, hNav1.4, moves in response to depolarization from the resting to the inactivated state, two D4S4 reporters (R2C and R3C, Arg1451Cys and Arg1454Cys, respectively) move from internal to external positions as deduced by reactivity to internally or externally applied sulfhydryl group reagents, methane thiosulfonates (MTS). The changes in reporter reactivity, when cycling rapidly between hyperpolarized and depolarized voltages, enabled determination of the positions of the D4 voltage-sensor and of its rate of movement. Scorpion α-toxin binding impedes D4S4 segment movement during inactivation since the modification rates of R3C in hNav1.4 with methanethiosulfonate (CH3SO2SCH2CH2R, where R = -N(CH3)3 + trimethylammonium, MTSET) and benzophenone-4-carboxamidocysteine methanethiosulfonate (BPMTS) were slowed ~10-fold in toxin-modified channels. Based upon the different size, hydrophobicity and charge of the two reagents it is unlikely that the change in reactivity is due to direct or indirect blockage of access of this site to reagent in the presence of toxin (Tx), but rather is the result of inability of this segment to move outward to the normal extent and at the normal rate in the toxin-modified channel. Measurements of availability of R3C to internally applied reagent show decreased access (slower rates of thiol reaction) providing further evidence for encumbered D4S4 movement in the presence of toxins consistent with the assignment of at least part of the toxin binding site to the region of D4S4 region of the voltage-sensor module.  相似文献   

7.
Membrane permeable N-ethylmaleimide (NEM) and (2-aminoethyl)methanethiosulfonatehydrobromide (MTSEA) inhibited the rat brain Na(+)-Ca(2+) exchanger RBE-2 (NCX1.5) expressed in HEK 293 cells in a dose dependent manner. 50% inhibition was obtained at 1 mm MTSEA and 1.65 mm NEM. External application of membrane impermeable [2-(trimethylammonium) ethyl]methanethiosulfonatebromide (MTSET) and sodium(2-sulfonatoethyl)methanethiosulfonate (MTSES) did not inhibit the transport activity in whole cells. Following reconstitution, however, of RBE-2 transfected cell proteins into proteoliposomes, external application of MTSET and MTSES led to a decrease in transport activity to 42.7 (S.D. = 9.1) and 51% (S.D. = 10.14), respectively. Similar results were obtained also when the rat heart isoform RHE-1 (NCX1.1) or the rat brain isoform RBE-1 (NCX1.4) was expressed. NEM and MTSEA inhibited Na(+) gradient-dependent Ca(2+) uptake also in HEK 293 cells expressing RBE-2/C14A/C20S/ C122S/C780S (numbering corresponds to RBE-2), a mutant in which all putative extracellular cysteines were exchanged. To study the accessibility of different cysteines to covalent modification, surface biotinylation of cells expressing the wild type exchanger and its mutants was carried out using 3-(N-maleimidylpropionyl)biocytin. Surface biotinylation revealed immunoreactive protein derived from the wild type Na(+)-Ca(2+) exchanger only if the transfected cells were exposed to the reducing agent Tris(2-carboxyethyl)phosphine. No reduction was needed when the single cysteine mutants of RBE-2, C14A, C20S, and C780S, were expressed. Treatment of the cells expressing these mutants with MTSET before biotinylation, led to a decrease in the amount of exchanger protein that was revealed. No immunoreactive protein was detected when the quadruple mutant RBE-2, C14A/C20S/C122S/C780S, was biotinylated, suggesting that no additional cysteines are accessible directly from the extracellular face of the membrane. Permeabilizing the cells expressing RBE-2/C14A/C20S/ C122S/C780S with streptolysin O resulted in biotinylation of the exchanger protein. Its amount decreased if exposure to NEM preceded streptolysin O treatment. Our results suggest that Na(+)-Ca(2+) exchange activity is inhibited by covalent modification with sulfhydryl reagents of cysteine residues that are accessible from the cytoplasmic face of the membrane.  相似文献   

8.
To explore aqueous accessibility and functional contributions of transmembrane domain (TM) 1 in human serotonin transporter (hSERT) proteins, we utilized the largely methanethiosulfonate (MTS) insensitive hSERT C109A mutant and mutated individual residues of hSERT TM1 to Cys followed by tests of MTS inactivation of 5-hydroxytryptamine (5-HT) transport. Residues in TM1 cytoplasmic to Gly-94 were largely unaffected by Cys substitution, whereas the mutation of residues extracellular to Ile-93 variably diminished transport activity. TM1 Cys substitutions displayed differential sensitivity to MTS reagents, with residues more cytoplasmic to Asp-98 being largely insensitive to MTS inactivation. Aminoethylmethanethiosulfonate (MTSEA), [2-(trimethylammonium) ethyl]methanethiosulfonate bromide (MTSET), and sodium (2-sulfonatoethyl)-methanethiosulfonate (MTSES) similarly and profoundly inactivated 5-HT transport by SERT mutants D98C, G100C, W103C, and Y107C. MTSEA uniquely inactivated transport activity of S91C, G94C, Y95C but increased activity at I108C. MTSEA and MTSET, but not MTSES, inactivated transport function at N101C. Notably, 5-HT provided partial to complete protection from MTSET inactivation for D98C, G100C, N101C, and Y107C. Equivalent blockade of MTSET inactivation at N101C was observed with 5-HT at both room temperature and at 4 degrees C, inconsistent with major conformational changes leading to protection. Notably, cocaine also protected MTSET inactivation of G100C and N101C, although MTS incubations with N101C that eliminate 5-HT transport do not preclude cocaine analog binding nor its inhibition by 5-HT. 5-HT modestly enhanced the inactivation by MTSET at I93C and Y95C, whereas cocaine significantly enhanced MTSET sensitivity at Y107C and I108C. In summary, our studies reveal physical differences in TM1 accessibility to externally applied MTS reagents and reveal sites supporting substrate and antagonist modulation of MTS inactivation. Moreover, we identify a limit to accessibility for membrane-impermeant MTS reagents that may reflect aspects of an occluded permeation pathway.  相似文献   

9.
Shuck K  Lamb RA  Pinto LH 《Journal of virology》2000,74(17):7755-7761
The M(2) ion channel of influenza A virus is a small integral membrane protein whose active form is a homotetramer with each polypeptide chain containing 96-amino-acid residues. To identify residues of the transmembrane (TM) domain that line the presumed central ion-conducting pore, a set of mutants was generated in which each residue of the TM domain (residues 25 to 44) was replaced by cysteine. The accessibility of the cysteine mutants to modification by the sulfhydryl-specific reagents methane thiosulfonate ethylammonium (MTSEA) and MTS tetraethylammonium (MTSET) was tested. Extracellular application of MTSEA evoked decreases in the conductances measured from two mutants, M(2)-A30C and M(2)-G34C. The changes observed were not reversible on washout, indicative of a covalent modification. Inhibition by MTSEA, or by the larger reagent MTSET, was not detected for residues closer to the extracellular end of the channel than Ala-30, indicating the pore may be wider near the extracellular opening. To investigate the accessibility of the cysteine mutants to reagents applied intracellularly, oocytes were microinjected directly with reagents during recordings. The conductance of the M(2)-W41C mutant was decreased by intracellular injection of a concentrated MTSET solution. However, intracellular application of MTSET caused no change in the conductance of the M(2)-G34C mutant, a result in contrast to that obtained when the reagent was applied extracellularly. These data suggest that a constriction in the pore exists between residues 34 and 41 which prevents passage of the MTS reagent. These findings are consistent with the proposed role for His-37 as the selectivity filter. Taken together, these data confirm our earlier model that Ala-30, Gly-34, His-37, and Trp-41 line the channel pore (L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J. Braman, M. A. Shaughnessy, J. D. Lear, R. A. Lamb, and W. F. DeGrado, Proc. Natl. Acad. Sci. USA 94:11301-11306, 1997).  相似文献   

10.
Loo TW  Bartlett MC  Clarke DM 《Biochemistry》2004,43(38):12081-12089
P-Glycoprotein (P-gp) is an ATP-dependent drug pump that transports a broad range of compounds out of the cell. Cross-linking studies have shown that the drug-binding pocket is at the interface between the transmembrane (TM) domains and can simultaneously bind two different drug substrates. Here, we determined whether cysteine residues within the drug-binding pocket were accessible to the aqueous medium. Cysteine mutants were tested for their reactivity with the charged thiol-reactive compounds sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) and [2-(trimethylammonium)ethyl)]methanethiosulfonate (MTSET). Residue Ile-306(TM5) is close to the verapamil-binding site. It was changed to cysteine, reacted with MTSES or MTSET, and assayed for verapamil-stimulated ATPase activity. Reaction of mutant I306C(TM5) with either compound reduced its affinity for verapamil. We confirmed that the reduced affinity for verapamil was indeed due to introduction of a charge at position 306 by demonstrating that similar effects were observed when Ile-306 was replaced with arginine or glutamic acid. Mutant I306R showed a 50-fold reduction in affinity for verapamil and very little change in the affinity for rhodamine B or colchicine. MTSES or MTSET modification also affected the cross-linking pattern between pairs of cysteines in the drug-binding pocket. For example, both MTSES and MTSET inhibited cross-linking between I306C(TM5) and I868C(TM10). Inhibition was enhanced by ATP hydrolysis. By contrast, cross-linking of cysteine residues located outside the drug-binding pocket (such as G300C(TM5)/F770C(TM8)) was not affected by MTSES or MTSET. These results indicate that the drug-binding pocket is accessible to water.  相似文献   

11.
Abstract

Voltage-gated ion (K+, Na+, Ca2+) channels contain a pore domain (PD) surrounded by four voltage sensing domains (VSD). Each VSD is made up of four transmembrane helices, S1–S4. S4 contains 6–7 positively charged residues (arginine/lysine) separated two hydrophobic residues, whereas S1–S3 contribute to two negatively charged clusters. These structures are conserved among all members of the voltage-gated ion channel family and play essential roles in voltage gating. The role of S4 charged residues in voltage gating is well established: During depolarization, they move out of the membrane electric field, exerting a mechanical force on channel gates, causing them to open. However, the role of the intervening hydrophobic residues in voltage sensing is unclear. Here we studied the role of these residues in the prototypical Shaker potassium channel. We have altered the physicochemical properties of both charged and hydrophobic positions of S4 and examined the effect of these modifications on the gating properties of the channel. For this, we have introduced cysteines at each of these positions, expressed the mutants in Xenopus oocytes, and examined the effect of in situ addition of charge, via Cd2+, on channel gating by two-electrode voltage clamp. Our results reveal a face of the S4 helix (comprising residues L358, L361, R365 and R368) where introduction of charge at hydrophobic positions destabilises the closed state and removal of charges from charged positions has an opposite effect. We propose that hydrophobic residues play a crucial role in limiting gating to a physiological voltage range.  相似文献   

12.
For structural studies it would be useful to constrain the voltage sensor of a voltage-gated channel in its deactivated state. Here we consider one Shaker potassium channel mutant and speculate about others that might allow the channel to remain deactivated at zero membrane potential. Ionic and gating currents of F370C Shaker, expressed in Xenopus oocytes, were recorded in patches with internal application of the methanethiosulfonate reagent MTSET. It appears that the voltage dependence of voltage sensor movement is strongly shifted by reaction with internal MTSET, such that the voltage sensors appear to remain deactivated even at positive potentials. A disadvantage of this construct is that the rate of modification of voltage sensors by MTSET is quite low, approximately 0.17 mM(-1).s(-1) at -80 mV, and is expected to be much lower at depolarized potentials.  相似文献   

13.
The contribution of transmembrane regions I, II, and III of the Rickettsia prowazekii ATP/ADP translocase to the structure of the putative water-filled ATP translocation channel was evaluated from the accessibility of hydrophilic, thiol-reactive, methanethiosulfonate reagents to a library of 68 independent cysteine-substitution mutants heterologously expressed in Escherichia coli. The MTS reagents used were MTSES (negatively charged) and MTSET and MTSEA (both positively charged). Mutants F036C, Y042C, and R046C (TM I), K066C and P072C (TM II), and F101C, F105C, F108C, Y113C, and P114C (TM III) had no assayable transport activity, indicating that cysteine substitution at these positions may not be tolerated. All three MTS reagents inhibit the transport of ATP in mutants of TM I (L039C, S043C, S047C, I048C) and TM II (S061C, S063C, T067C, I069C, V070C, A074C). Further, these residues appear to cluster along a single face of the transmembrane domain. Preexposure of MTS-reactive mutants S047C (TM I) and T067C (TM II) to high levels of ATP resulted in protection from MTS-mediated inhibition. This indicated that both TM I and TM II make major contributions to the structure of an aqueous ATP translocation pathway. Finally, on the basis of the lack of accessibility of charged MTS reagents to the thiol groups in mutants of TM III, it appears that TM III is not exposed to the ATP translocation channel. Cysteine substitution of residues constituting a highly conserved "phenylalanine face" in TM III resulted in ablation of ATP transport activity. Further, substituting these phenylalanine residues for either isoleucine or tyrosine also resulted in much lower transport activity, indicating that some property of phenylalanine at these positions that is not shared by cysteine, isoleucine, or tyrosine is critical to translocase activity.  相似文献   

14.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.  相似文献   

15.
Interactions between nontransmembrane domains and the lipid membrane are proposed to modulate activity of many ion channels. In Kir channels, the so-called "slide-helix" is proposed to interact with the lipid headgroups and control channel gating. We examined this possibility directly in a cell-free system consisting of KirBac1.1 reconstituted into pure lipid vesicles. Cysteine substitution of positively charged slide-helix residues (R49C and K57C) leads to loss of channel activity that is rescued by in situ restoration of charge following modification by MTSET(+) or MTSEA(+), but not MTSES(-) or neutral MMTS. Strikingly, activity is also rescued by modification with long-chain alkyl-MTS reagents. Such reagents are expected to partition into, and hence tether the side chain to, the membrane. Systematic scanning reveals additional slide-helix residues that are activated or inhibited following alkyl-MTS modification. A pattern emerges whereby lipid tethering of the N terminus, or C terminus, of the slide-helix, respectively inhibits, or activates, channel activity. This study establishes a critical role of the slide-helix in Kir channel gating, and directly demonstrates that physical interaction of soluble domains with the membrane can control ion channel activity.  相似文献   

16.
The gamma-aminobutyric acid type A (GABA(A)) receptor M2-M3 loop structure and its role in gating were investigated using the substituted cysteine accessibility method. Residues from alpha(1)Arg-273 to alpha(1)Ile-289 were mutated to cysteine, one at a time. MTSET(+) or MTSES(-) reacted with all mutants from alpha(1)R273C to alpha(1)Y281C, except alpha(1)P277C, in the absence and presence of GABA. The MTSET(+) closed-state reaction rate was >1000 liters/mol-s at alpha(1)N274C, alpha(1)S275C, alpha(1)K278C, and alpha(1)Y281C and was <300 liters/mol-s at alpha(1)R273C, alpha(1)L276C, alpha(1)V279C, alpha(1)A280C, and alpha(1)A284C. These two groups of residues lie on opposite sides of an alpha-helix. The fast reacting group lies on a continuation of the M2 segment channel-lining helix face. This suggests that the M2 segment alpha-helix extends about two helical turns beyond alpha(1)N274 (20'), aligned with the extracellular ring of charge. At alpha(1)S275C, alpha(1)V279C, alpha(1)A280C, and alpha(1)A284C the reaction rate was faster in the presence of GABA. The reagents had no functional effect on the mutants from alpha(1)A282C to alpha(1)I289C, except alpha(1)A284C. Access may be sterically hindered possibly by close interaction with the extracellular domain. We suggest that the M2 segment alpha-helix extends beyond the predicted extracellular end of the M2 segment and that gating induces a conformational change in and/or around the N-terminal half of the M2-M3 loop. Implications for coupling ligand-evoked conformational changes in the extracellular domain to channel gating in the membrane-spanning domain are discussed.  相似文献   

17.
Winkler HH  Daugherty RM  Audia JP 《Biochemistry》2003,42(43):12562-12569
The contribution of transmembrane region VIII of the Rickettsia prowazekii ATP/ADP translocase to the structure of the water-filled channel through which ATP is transported was evaluated from the accessibility of three hydrophilic, thiol reactive, methanethiosulfonate reagents to a library of 21 single-cysteine substitution mutants expressed in Escherichia coli. A negatively charged reagent (MTSES) and two positively charged reagents (MTSET and MTSEA) were used. Mutants Q323C and G327C did not tolerate cysteine substitution and were almost completely deficient in ATP transport. The remaining mutants exhibited 25-226% of the cysteine-less parent's transport activity. Five patterns of inhibition of ATP transport by the MTS reagents were observed. (i) ATP transport was not inhibited by any of the three MTS reagents in mutants Q321C, F324C, A332C, and L335C and only marginally in F333C. (ii) Transport activity of mutants F322C, Q326C, and A330C was markedly inhibited by all three reagents. (iii) ATP transport was inhibited by MTSEA in only the largest group of mutants (M334C, I336C, G337C, S338C, N339C, I340C, and I341C). (iv) Transport activity was inhibited by MTSET and MTSEA, whereas high concentrations of MTSES were required to inhibit mutants W328C, V329C, and I331C. However, mutant W328C could be inhibited by MTSES in the presence of sub-K(m) concentrations of the substrate. (v) ATP transport by mutant Y325C was unaffected by MTSEA, but inhibited approximately 50% by MTSET and MTSES. Transport of ATP protected mutants (F322C, W328C, V329C, A330C, and I331C) from MTS inhibition. Mutants in the half of TM VIII that is closest to the cytoplasm were not inhibited well by MTSES or MTSET in either whole cells or inside-out vesicles. The results indicate that TM VIII makes a major contribution to the structure of the aqueous translocation pathway, that the accessibility to impermeant thiol reagents is influenced (blocked or stimulated) by substrate, and that there is great variation in accessibility to MTS reagents along the length of TM VIII.  相似文献   

18.
The Na+/H+ exchanger isoform 1 is an integral membrane protein that regulates intracellular pH. It extrudes 1 intracellular H+ in exchange for 1 extracellular Na+. It has 2 large domains, an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the cysteine accessibility of amino acids of the critical transmembrane segment TM VII. Residues Leu 255, Leu 258, Glu 262, Leu 265, Asn 266, Asp 267, Val 269, Val 272, and Leu 273 were all mutated to cysteine residues in the cysteineless NHE1 isoform. Mutation of amino acids E262, N266, and D267 caused severe defects in activity and targeting of the intact full length protein. The balance of the active mutants were examined for sensitivity to the sulfhydryl reactive reagents, positively charged MTSET ((2- (trimethylammonium)ethyl)methanethiosulfonate) and negatively charged MTSES ((2-sulfonatoethyl)methanethiosulfonate). Leu 255 and Leu 258 were sensitive to MTSET but not to MTSES. The results suggest that these amino acids are pore-lining residues. We present a model of TM VII that shows that residues Leu 255, Leu 258, Glu 262, Asn 266, and Asp 267 lie near the same face of TM VII, lining the ion transduction pore.  相似文献   

19.
A gating mutation in the internal pore of ASIC1a   总被引:2,自引:0,他引:2  
Using a substituted cysteine accessibility scan, we have investigated the structures that form the internal pore of the acid-sensing ion channel 1a. We have identified the amino acid residues Ala-22, Ile-33, and Phe-34 in the amino terminus and Arg-43 in the first transmembrane helix, which when mutated into cysteine, were modified by intracellular application of MTSET, resulting in channel inhibition. The inhibition of the R43C mutant by internal MTSET requires opening of the channel. In addition, binding of Cd2+ ions to R43C slows the channel inactivation. This indicates that the first transmembrane helix undergoes conformational changes during channel inactivation. The effect of Cd2+ on R43C can be obtained with Cd2+ applied at either the extracellular or the intracellular side, indicating that R43C is located in the channel pore. The block of the A22C, I33C, and F34C mutants by MTSET suggests that these residues in the amino terminus of the channel also participate to the internal pore.  相似文献   

20.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号