首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquinol-2 or duroquinol oxidoreductase activity of mitochondrial ubiquinol-cytochrome c oxidoreductase was titrated with combinations of antimycin, myxothiazol and N,N'-dicyclohexylcarbodiimide (DCCD). A statistical model has been developed that can predict the activity of the complex treated with all possible combinations of these inhibitors. On the basis of the measured titration curves the model had to accommodate interaction between the two promoters of the complex. The titrations confirm that treatment with DCCD results in the modification of a certain site in one of the two promoters of the bc1 dimer, thereby blocking one antimycin A binding site without inhibiting electron transfer. Modification of both antimycin A binding sites of the dimer is apparently required for inhibition of electron transfer through the complex, just as modification of both myxothiazol-binding sites is required for full inhibition. The conclusion can be drawn that mitochondrial ubiquinol-cytochrome c oxidoreductase is a functional dimer, consisting of electrically interacting protomers.  相似文献   

2.
The effect of antimycin, myxothiazol, 2-heptyl-4-hydroxyquinoline-N-oxide, stigmatellin and cyanide on respiration, ATP synthesis, cytochrome c reductase, and membrane potential in mitochondria isolated from dark-grown Euglena cells was determined. With L-lactate as substrate, ATP synthesis was partially inhibited by antimycin, but the other four inhibitors completely abolished the process. Cyanide also inhibited the antimycin-resistant ATP synthesis. Membrane potential was collapsed (<60 mV) by cyanide and stigmatellin. However, in the presence of antimycin, a H(+)60 mV) that sufficed to drive ATP synthesis remained. Cytochrome c reductase, with L-lactate as donor, was diminished by antimycin and myxothiazol. Cytochrome bc(1) complex activity was fully inhibited by antimycin, but it was resistant to myxothiazol. Stigmatellin inhibited both L-lactate-dependent cytochrome c reductase and cytochrome bc(1) complex activities. Respiration was partially inhibited by the five inhibitors. The cyanide-resistant respiration was strongly inhibited by diphenylamine, n-propyl-gallate, salicylhydroxamic acid and disulfiram. Based on these results, a model of the respiratory chain of Euglena mitochondria is proposed, in which a quinol-cytochrome c oxidoreductase resistant to antimycin, and a quinol oxidase resistant to antimycin and cyanide are included.  相似文献   

3.
N Howell 《Biochemistry》1990,29(38):8970-8977
The mouse LA9 HQN-R11 cytochrome b mutant, in which the glycine residue at position 231 is replaced by aspartic acid, has increased resistance to all inhibitors of the Qn redox center. It is shown here that this single amino acid alteration has multiple and unexpectedly diverse effects upon the mitochondrial protonmotive bc1 complex. (1) The specific activities of both succinate- and ubiquinol-cytochrome c oxidoreductases in isolated mitochondria are reduced by approximately 65% in the mutant. The parallel reductions in both oxidoreductase activities are not compatible with simple Q pool kinetics for mitochondrial electron transport. (2) There is also a reduction in the relative concentration of cytochrome b in the mutant when calculated on the basis of mitochondrial protein; this decrease does not account for more than a small portion of the reduced catalytic fluxes. (3) The increased antimycin resistance of the mutant is lost upon solubilization by the detergent dodecyl maltoside of the bc1 complex from mitochondria. (4) In pre-steady-state assays of cytochrome b reduction by quinol, the mutant shows a reduced extent of reduction. It was observed in other experiments that there was less oxidant-induced extrareduction of cytochrome b in the mutant. These results could arise from a lowering of the midpoint potentials of both the cytochrome b-562 and cytochrome b-566 heme groups. Alternatively, these effects may reflect changes at the Qp and Qn quinone/quinol binding sites. (5) An unexplained observation for the mutant is the increased rate of cytochrome c1 reduction in the presence of myxothiazol. (6) These functional alterations in the LA9 HQN-R11 mutant are not accompanied by detectable changes in the spectral properties of the cytochrome b or c1 heme groups.  相似文献   

4.
The reduction of the following exogenous quinones by succinate and NADH was studied in mitochondria isolated from both wild type and ubiquinone (Q)-deficient strains of yeast: ubiquinone-0 (Q0), ubiquinone-1 (Q1), ubiquinone-2 (Q2), and its decyl analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), duroquinone (DQ), menadione (MQ), vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone), the plastoquinone analogue 2,3,6-trimethyl-1,4-benzoquinone (PQOc1), plastoquinone-2 (PQ2), and its decyl analogue (2,3-dimethyl-6-decyl-1,4-benzoquinone). Reduction of the small quinones DQ, Q0, Q1, and PQOc1 by NADH occurred in both wild type and Q-deficient mitochondria in a reaction inhibited more than 50% by myxothiazol and less than 20% by antimycin. The reduction of these small quinones by succinate also occurred in wild type mitochondria in a reaction inhibited more than 50% by antimycin but did not occur in Q-deficient mitochondria suggesting that endogenous Q6 is involved in their reduction. In addition, the inhibitory effects of antimycin and myxothiazol, specific inhibitors of the cytochrome b-c1 complex, on the reduction of these small quinones suggest the involvement of this complex in the electron transfer reaction. By contrast, the reduction of Q2 and DB by succinate was insensitive to inhibitors and by NADH was 20-30% inhibited by myxothiazol suggesting that these analogues are directly reduced by the primary dehydrogenases. The dependence of the sensitivity to the inhibitors on the substrate used suggests that succinate-ubiquinone oxidoreductase interacts specifically with center i (the antimycin-sensitive site) and NADH ubiquinone oxidoreductase preferentially with center o (the myxothiazol-sensitive site) of the cytochrome b-c1 complex. The NADH dehydrogenase involved in the myxothiazol-sensitive quinone reduction faces the matrix side of the inner membrane suggesting that center o may be localized within the membrane at a similar depth as center i.  相似文献   

5.
Mouse LA9 cell lines were selected for increased resistance to either HQNO or myxothiazol, inhibitors of electron transport which bind to the mitochondrial cytochrome b protein. Two phenotypically distinguishable HQNO-resistant mutants were recovered while the myxothiazol-resistant isolates had a common phenotype. All three mutant phenotypes were transmitted cytoplasmically in cybrid crosses. Biochemical studies further established that for all three mutant types, resistance at the cellular level was paralleled by an increase in inhibitor resistance of mitochondrial succinate-cytochrome c oxidoreductase, the respiratory complex containing cytochrome b. As with the previously described mitochondrial antimycin-resistant mutant, the initial biochemical and genetic studies indicated that these mutations occur within the mitochondrial cytochrome b gene. This conclusion was strongly supported by the results of mtDNA restriction fragment analyses in which it was found that one HQNO-resistant mutant had undergone a small insertion or duplication in the apocytochrome b gene. Finally, all four mitochondrial cytochrome b mutants have been analyzed in both cell plating studies and succinate-cytochrome c oxidoreductase assays to determine the pattern of cross-resistance to inhibitors of cytochrome b other than the one used for selection.  相似文献   

6.
Steady-state electron flow through and electron delivery into isolated dimeric bc1 complex (ubiquinol--cytochrome c oxidoreductase) from Neurospora crassa and beef heart mitochondria were studied in the presence of increasing concentrations of antimycin A, funiculosin and/or myxothiazol. Parabolic or linear inhibition curves were obtained, depending upon the different quinols and inhibitors that were used. Linear curves occur when the inhibitor directly affects the rate-determining step. The most reasonable explanation for the parabolic curves is given by a fast intradimeric exchange of the hydrophobic inhibitors antimycin A, funiculosin (rate less than 500 s-1) and of myxothiazol (rate greater than 1 s-1). Using mitochondria from beef heart, the shape of the inhibition curve with antimycin A is parabolic if the quinol--O2 oxidoreductase turns over at about 300 s-1, but hyperbolic if the rate is 5 times less. The hyperbolic titration curve may be the result of both intradimeric and an additional interdimeric redistribution (rate approximately 100 s-1) of inhibitors between enzymes incorporated in a continuous phospholipid membrane. This explanation is supported by experiments with chromatophores obtained from Rhodobacter capsulatus. As recently described [Fernandez-Velasco, J. & Crofts, A. R. (1992) Biophys. J. 2, A153], cytochrome b becomes fully reoxidized within 1 s after a flash at substoichiometric concentrations of antimycin A. This kinetic of the slow reoxidation can be expressed in terms of the intradimeric and interdimeric redistribution with rate constants of about 10 s-1 and 2 x 10(6) M-1 s-1, respectively. It seems that rapid inhibitor redistribution may be a widespread phenomenon for hydrophobic inhibitors of enzymes incorporated in lipid membranes.  相似文献   

7.
Summary Using allelism tests, two diuron (DIU1, DIU2), one funiculosin (FUN1), and two antimycin (ANA1, ANA2) resistance loci are resolved into two mitochondrial drug-resistant genetic loci. DIU1 is allelic to ANA2 and FUN1. DIU2 is allelic to ANA1.Chercheur qualifié du Fonds National de la Recherche Scientifique  相似文献   

8.
The cytochrome bf complex, which links electron transfer from photosystem II to photosystem I in oxygenic photosynthesis, has not been amenable to site-directed mutagenesis in cyanobacteria. Using the cyanobacterium Synechococcus sp. PCC 7002, we have successfully modified the cytochrome b(6) subunit of the cytochrome bf complex. Single amino acid substitutions in cytochrome b(6) at the positions D148, A154, and S159 revealed altered binding of the quinol-oxidation inhibitors 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), myxothiazol, and stigmatellin. Cytochrome bf and mitochondrial-type cytochrome bc(1) complexes are closely related in structure and function but exhibit quite different inhibitor specificities. Cytochrome bf complexes are insensitive to myxothiazol and sensitive to DBMIB, whereas cytochrome bc(1) complexes are sensitive to myxothiazol and relatively insensitive to DBMIB. Measurements of flash-induced and steady-state electron transfer rates through the cytochrome bf complex revealed increased resistance to DBMIB in the mutants A154G and S159A, increased resistance to stigmatellin in A154G, and created sensitivity to myxothiazol in the mutant D148G. Therefore these mutations made the cytochrome bf complex more like the cytochrome bc(1) complex. This work demonstrates that cyanobacteria can be used as effective models to investigate structure-function relationships in the cytochrome bf complex.  相似文献   

9.
Mutational analysis of the mouse mitochondrial cytochrome b gene   总被引:13,自引:0,他引:13  
The protonmotive cytochrome b protein of the mitochondrial bc1 respiratory chain complex contains two reactions centers, designated Qo and Qi, which can be distinguished by the effects of different inhibitors. The nucleotide sequences have been determined of the mitochondrial cytochrome b genes from a series of mouse cell mutants selected for increased inhibitor resistance. Each mutant contains a single nucleotide change which results in an amino acid substitution. When the proximity of the altered amino acid residues to the histidines involved in heme ligation is considered, the results support a model for cytochrome b folding in which there are eight transmembrane domains rather than the nine of the Widger-Saraste model. Replacement of the Gly38 residue by valine results in resistance to the Qi inhibitors antimycin A and funiculosin but not 2-n-heptyl-hydroxyquinoline-N-oxide. Based upon sequence comparisons of mitochondrial and bacterial cytochrome b and chloroplast b6 proteins, the region of the molecule involved in antimycin binding is as highly conserved as those domains involved in heme ligation. It is suggested that the antimycin binding domain of cytochrome b is involved in forming the Qi reaction center. Alterations of the Gly142 and Thr147 residues result in resistance to myxothiazol and stimatellin, respectively. While both inhibitors block the Qo reaction center, the two mutations do not confer cross-resistance to each other. This region of cytochrome b is the most highly conserved during evolution and these inhibitor binding sites probably occur within the protein domain constituting the Qo reaction center. In addition, there is a less conserved region of the protein, defined by the Leu294 residue, which may function in binding the hydrophobic portions of Qo inhibitors.  相似文献   

10.
The yeast C. parapsilosis CBS7157 is strictly dependent on oxidative metabolism for growth since it lacks a fermentative pathway. It is nevertheless able to grow on high glucose concentrations and also on a glycerol medium supplemented with antimycin A or drugs acting at the level of mitochondrial protein synthesis. Besides its normal respiratory chain C. parapsilosis develops a second electron transfer chain antimycin A-insensitive which allows the oxidation of cytoplasmic NAD(P)H resulting from glycolytic and hexose monophosphate pathways functioning through a route different from the NADH-coenzyme Q oxidoreductase described in S. cerevisiae or from the alternative pathways described in numerous plants and microorganisms. The second respiratory chain of C. parapsilosis involves 2 dehydrogenases specific for NADH and NADPH respectively, which are amytal and mersalyl sensitive and located on the outer face of the inner membrane. Since this antimycin A-insensitive pathway is fully inhibited by myxothiazol, it was hypothesized that electrons are transferred to a quinone pool that is different from the classical coenzyme Q-cytochrome b cycle. Two inhibitory sites were evidenced with myxothiazol, one related to the classical pathway, the other to the second pathway and thus, the second quinone pool could bind to a Q-binding protein at a specific site. Elimination of this second pool leads to a fully antimycin A-sensitive NADH oxidation, whereas its reincorporation in mitochondria allows recovery of an antimycin A-insensitive, myxothiazol sensitive NADH oxidation. The third step in this second respiratory chain involves a specific pool of cytochrome c which can deliver electrons either to a third phosphorylation site or to an alternative oxidase, cytochrome 590. This cytochrome is inhibited by high cyanide concentrations and salicylhydroxamates.  相似文献   

11.
The reduction of duroquinone (DQ), 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), and dichlorophenol indophenol (DCIP) by succinate and NADH was investigated in yeast mitochondria which have no spectrally detectable cytochrome b. Succinate reduces DB in the cytochrome b-deficient mitochondria at rates comparable to that observed in wild-type mitochondria, suggesting that succinate:ubiquinone oxidoreductase is unaffected by the lack of cytochrome b. In the mutant mitochondria, succinate does not reduce DQ or DCIP at significant rates; however, NADH reduces both DQ and DCIP at rates similar to that of the wild-type mitochondria in a myxothiazol, but not antimycin, sensitive reaction. The Ki for myxothiazol in this reaction is close to that for electron transfer through the cytochrome b-c1 complex. In addition, myxothiazol does not inhibit NADH:ubiquinone oxidoreductase. These results confirm our previous suggestion that the cytochrome b-c1 complex is involved in electron transfer from the primary dehydrogenases to DQ and DCIP and suggest that cytochrome b is not the binding site for myxothiazol.  相似文献   

12.
We have obtained evidence for conformational communication between ubiquinol oxidation (center P) and ubiquinone reduction (center N) sites of the yeast bc1 complex dimer by analyzing antimycin binding and heme bH reduction at center N in the presence of different center P inhibitors. When stigmatellin was occupying center P, concentration-dependent binding of antimycin occurred only to half of the center N sites. The remaining half of the bc1 complex bound antimycin with a slower rate that was independent of inhibitor concentration, indicating that a slow conformational change needed to occur before half of the enzyme could bind antimycin. In contrast, under conditions where the Rieske protein was not fixed proximal to heme bL at center P, all center N sites bound antimycin with fast and concentration-dependent kinetics. Additionally, the extent of fast cytochrome b reduction by menaquinol through center N in the presence of stigmatellin was approximately half of that observed when myxothiazol was bound at center P. The reduction kinetics of the bH heme by decylubiquinol in the presence of stigmatellin or myxothiazol were also consistent with a model in which fixation of the Rieske protein close to heme bL in both monomers allows rapid binding of ligands only to one center N. Decylubiquinol at high concentrations was able to abolish the biphasic binding of antimycin in the presence of stigmatellin but did not slow down antimycin binding rates. These results are discussed in terms of half-of-the-sites activity of the dimeric bc1 complex.  相似文献   

13.
The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to as center N (Qn site) and center P (Qp site), respectively. Both are located on cytochrome b, a transmembrane protein of the bc1 complex that is encoded on the mitochondrial genome. To better understand the parameters that affect ligand binding at the Qn site, we applied the Qn site inhibitor ilicicolin H to select for mutations conferring resistance in Saccharomyces cerevisiae. The screen resulted in seven different single amino acid substitutions in cytochrome b rendering the yeast resistant to the inhibitor. Six of the seven mutations have not been previously linked to inhibitor resistance. Ubiquinol-cytochrome c reductase activities of mitochondrial membranes isolated from the mutants confirmed that the differences in sensitivity toward ilicicolin H originated in the cytochrome bc1 complex. Comparative in vivo studies using the known Qn site inhibitors antimycin and funiculosin showed little cross-resistance, indicating different modes of binding of these inhibitors at center N of the bc1 complex.  相似文献   

14.
The involvement of a quinone in the antimycin A-insensitive electron transfer from NADH-dehydrogenase to cytochrome c via the alternative respiratory chain of Candida parapsilosis, by-passing complex II, has been studied. After a partial extraction of quinones, the residual respiration was fully antimycin-A-sensitive, but reincorporation of the organic extract partially restored an antimycin A-insensitive respiration. Analysis of quinone content by HPLC, after purification by thin-layer chromatography, evidenced another quinone species in a very low amount. Myxothiazol and stigmatellin were shown to inhibit the alternative pathway but at a higher concentration than required to inhibit the classical pathway. Cytochrome spectra analysis showed that, in the presence of high myxothiazol concentrations, cytochromes c and aa3 were not reduced, while they were in the presence of antimycin A. It is suggested that the secondary pathway of C. parapsilosis involved a specific quinone pool which can be displaced from its binding site by high concentrations of myxothiazol or analogous compounds.  相似文献   

15.
Changes are described that are brought about by antimycin, NoHOQnO, funiculosin, myxothiazol and mucidin in the alpha-, beta- and gamma-absorption bands of reduced and oxidized cytochromes b in the isolated complex bc1 form beef heart mitochondria. The inhibitors can be divided into 2 groups. Antimycin, funiculosin and NoHOQnO are likely to shift the spectrum of b-562 and compete for specific binding with complex bc1, with each other but not with myxothiazol and mucidin. The spectral effects of the latter two inhibitors are more difficult to interpret and may involve contributions not only from b-562 but from b-566 as well. The existence of 2 independent inhibitor binding-sites in the complex bc1 corroborates the Q-cycle hypothesis.  相似文献   

16.
F Daldal  M K Tokito  E Davidson    M Faham 《The EMBO journal》1989,8(13):3951-3961
Several spontaneous mutants of the photosynthetic bacterium Rhodobacter capsulatus resistant to myxothiazol, stigmatellin and mucidin--inhibitors of the ubiquinol: cytochrome c oxidoreductase (cyt bc1 complex)--were isolated. They were grouped into eight different classes based on their genetic location, growth properties and inhibitor cross-resistance. The petABC (fbcFBC) cluster that encodes the structural genes for the Rieske FeS protein, cyt b and cyt c1 subunits of the cyt bc1 complex was cloned out of the representative isolates and the molecular basis of inhibitor-resistance was determined by DNA sequencing. These data indicated that while one group of mutations was located outside the petABC(fbcFBC) cluster, the remainder were single base pair changes in codons corresponding to phylogenetically conserved amino acid residues of cyt b. Of these substitutions, F144S conferred resistance to myxothiazol, T163A and V333A to stigmatellin, L106P and G152S to myxothiazol + mucidin and M140I and F144L to myxothiazol + stigmatellin. In addition, a mutation (aer126) which specifically impairs the quinol oxidase (Qz) activity of the cyt bc1 complex of a non-photosynthetic mutant (R126) was identified to be a glycine to an aspartic acid replacement at position 158 of cyt b. Six of these mutations were found between amino acid residues 140 and 163, in a region linking the putative third and fourth transmembrane helices of cyt b. The non-random clustering of several inhibitor-resistance mutations around the non-functional aer126 mutation suggests that this region may be involved in the formation of the Qz inhibitor binding/quinol oxidation domain(s) of the cyt bc1 complex. Of the two remaining mutations, the V333A replacement conferred resistance to stigmatellin exclusively and was located in another region toward the C terminus of cyt b. The L106P substitution, on the other hand, was situated in the transmembrane helix II that carries two conserved histidine residues (positions 97 and 111 in R. capsulatus) considered to be the axial ligands for the heme groups of cyt b. The structural and functional roles of the amino acid residues involved in the acquisition of Qz inhibitor resistance are discussed in terms of the primary structure of cyt b and in relation to the natural inhibitor-resistance of various phylogenetically related cyt bc/bf complexes.  相似文献   

17.
We have investigated the oxidation of the reduced ubiquinol:cytochrome c reductase (bc1 complex) isolated from beef heart mitochondria. The oxidation of cytochrome c1 by both potassium ferricyanide and cytochrome c in the ascorbate-reduced bc1 complex is not a first-order process. This is taken as evidence that cytochrome c1 is in rapid equilibrium with the Rieske iron-sulphur center. Among the several inhibitors tested, only 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole and stigmatellin are seen to affect this redox equilibrium between the high-potential centers of the beef heart bc1 complex. The oxidation of cytochrome b by cytochrome c in both the succinate-reduced and the fully reduced bc1 complex is blocked by all the inhibitors tested. This inhibition occurs simultaneously with an acceleration in the oxidation of cytochrome c1, even after extraction of the endogenous ubiquinone which is present in the bc1 preparation. Almost complete extraction of ubiquinone from the bc1 complex has no effect upon the rapid phase of cytochrome b oxidation, nor does it alter the inhibition of cytochrome b oxidation by the various inhibitors. The oxidation of cytochrome b by exogenous ubiquinones is stimulated by myxothiazol and partially inhibited by antimycin. However, the addition of both these inhibitors together completely blocks the oxidation of cytochrome b by quinones. In contrast, the simultaneous addition of antimycin and myxothiazol has no such synergistic effect upon the oxidation of cytochrome b by cytochrome c. Our data show that intramolecular electron transfer from cytochrome(s) b to the Rieske iron-sulphur center can take place in the bc1 complex without involvement of endogenous ubiquinone-10. This electron pathway is sensitive to all the inhibitors of the enzyme.  相似文献   

18.
Inactivation of the gene encoding the 11-kDa subunit VIII of yeast ubiquinol:cytochrome c oxidoreductase leads to an inactive complex, which lacks detectable cytochrome b [Maarse, A. C., De Haan, M., Schoppink, P. J., Berden, J. A. and Grivell, L. A. (1988) Eur. J. Biochem. 172, 179-184] and in which the steady-state levels of the Fe-S protein and the 14-kDa subunit VII are severely reduced. When the 11-kDao mutant is transformed with a gene encoding a protein consisting of the 11-kDa protein minus its last 11 amino acids and fused to a 7-amino-acid sequence encoded by a stop oligonucleotide, the complex is assembled normally. Enzyme activity is similar to that of the wild type, as is also the sensitivity of the complex to antimycin and myxothiazol. Transformation of the mutant with a gene encoding a protein consisting of the 11-kDa protein lacking the last 43 amino acids (i.e. almost half the protein) and fused to the same 7-amino-acid sequence as above, gives partial restoration of the complex. The Fe-S protein and the 14-kDa subunit VII still exhibit low steady-state levels, but cytochrome b is present again, albeit at a strongly reduced level. Electron transport activity is also partially restored and correlates with the level of cytochrome b indicating that the turnover number of the complex is similar to that of wild-type complex III. These findings demonstrate the important role played by the 11-kDa protein in the stabilization of cytochrome b. They also imply that at least the C-terminal half of the 11-kDa protein is not part of an ubiquinol-binding site. Moreover, since the deletion has no effect on the sensitivity of the complex to myxothiazol and antimycin, at least this part of the protein is probably not involved in binding of these inhibitors.  相似文献   

19.
Shinkarev VP  Crofts AR  Wraight CA 《Biochemistry》2001,40(42):12584-12590
The cytochrome bc(1) complex is the central enzyme of respiratory and photosynthetic electron-transfer chains. It couples the redox work of quinol oxidation and cytochrome reduction to the generation of a proton gradient needed for ATP synthesis. When the quinone processing Q(i)- and Q(o)-sites of the complex are inhibited by both antimycin and myxothiazol, the flash-induced kinetics of the b-heme chain, which transfers electrons between these sites, are also expected to be inhibited. However, we have observed in Rhodobacter sphaeroides chromatophores, that when a fraction of heme b(H) is reduced, flash excitation induces fast (half-time approximately 0.1 ms) oxidation of heme b(H), even in the presence of antimycin and myxothiazol. The sensitivity of this oxidation to ionophores and uncouplers, and the absence of any delay in the onset of this reaction, indicates that it is due to a reversal of electron transfer between b(L) and b(H) hemes, driven by the electrical field generated by the photosynthetic reaction center. In the presence of antimycin A, but absence of myxothiazol, the second and following flashes induce a similar ( approximately 0.1 ms) transient oxidation of approximately 10% of the cytochrome b(H) reduced on the first flash. From the observed amplitude of the field-induced oxidation of heme b(H), we estimate that the equilibrium constant for sharing one electron between hemes b(L) and b(H) is 10-15 at pH 7. The small value of this equilibrium constant modifies our understanding of the thermodynamics of the Q-cycle, especially in the context of a dimeric structure of bc(1) complex.  相似文献   

20.
Biochemical analyses of Rubrivivax gelatinosus membranes have revealed that the cytochrome bc(1) complex is highly resistant to classical inhibitors including myxothiazol, stigmatellin, and antimycin. This is the first report of a strain exhibiting resistance to inhibitors of both catalytic Q(0) and Q(i) sites. Because the resistance to cytochrome bc(1) inhibitors is primarily related to the cytochrome b primary structure, the petABC operon encoding the subunits of the cytochrome bc(1) complex of Rubrivivax gelatinosus was sequenced. In addition to homologies to the corresponding proteins from other organisms, the deduced amino acid sequence of the cytochrome b polypeptide shows (i) an E303V substitution in the highly conserved PEWY loop involved in quinol/stigmatellin binding, (ii) other substitutions that could be involved in resistance to cytochrome bc(1) inhibitors, and (iii) 14 residues instead of 13 between the histidines in helix IV that likely serve as the second axial ligand to the b(H) and b(L) hemes, respectively. These characteristics imply different functional properties of the cytochrome bc(1) complex of this bacterium. The consequences of these structural features for the resistance to inhibitors and for the properties of R. gelatinosus cytochrome bc(1) are discussed with reference to the structure and function of the cytochrome bc(1) complexes from other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号