首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The VWC domain of Chordin family proteins consists of subdomains SD1 and SD2. In previous experiments with VWC1 from CV-2 SD-1 was shown to be crucial for BMP interaction. Now the SD1 from VWC1 and VWC3 of Chordin and CHL2 were established to confer BMP affinity and specificity to these proteins also. In addition, these SD1 subdomains are mediating binding to Tsg. Mutational analysis revealed similar binding epitopes of the various SD1 proteins for BMP-2 and Tsg. Inhibitory activity of CHL2 in C2C12 cells is reduced by mutations in SD1 of VWC1 and even more of VWC3. These results together provide strong evidence that the SD1 subdomain module of about 40 residues represents the crucial binding partner for BMPs and Tsg in these Chordin family proteins and likely in other BMP-binding VWC domains also.  相似文献   

2.
Bone morphogenetic protein (BMP) function is regulated in the extracellular space by many modulator proteins, including those containing a von Willebrand factor type C (VWC) domain. The function of the VWC domain-containing proteins in development and diseases has been extensively studied. The structural basis, however, for the mechanism by which BMP is regulated by these proteins is still poorly understood. By analyzing chordin, CHL2 (chordin-like 2), and CV2 (crossveinless 2) as well as their individual VWC domains, we show that the VWC domain is a versatile binding module that in its multiple forms and environments can expose a variety of binding specificities. Three of four, two of three, and one of five VWCs from chordin, CHL2, and CV2, respectively, can bind BMPs. Using an array of BMP-2 mutant proteins, it can be demonstrated that the binding-competent VWC domains all use a specific subset of BMP-2 binding determinants that overlap with the binding site for the type II receptors (knuckle epitope) or for the type I receptors (wrist epitope). This explains the competition between modulator proteins and receptors for BMP binding and therefore the inhibition of BMP signaling. A subset of VWC domains from CHL2 binds to the Tsg (twisted gastrulation) protein similar to chordin. A stable ternary complex consisting of BMP-2, CHL2, and Tsg can be formed, thus making CHL2 a more efficient BMP-2 inhibitor. The VWCs of CV2, however, do not interact with Tsg. The present results show that chordin, CHL2, and CV2 regulate BMP-2 signaling by different recognition mechanisms.  相似文献   

3.
Drosophila Crossveinless-2 (dCV-2) is required for local activation of Mad phosphorylation in the fruit fly wing and has been postulated to be a positive regulator of BMP-mediated signaling. In contrast, the presence of 5 Chordin-like cysteine-rich domains in the CV-2 protein suggests that CV-2 belongs to a family of well-established inhibitors of BMP function that includes Chordin and Sog [Development 127 (2000) 3947]. We have identified a human homolog of Drosophila CV-2 (hCV-2). Here we show that purified recombinant hCV-2 protein inhibits BMP-2 and BMP-4 dependent osteogenic differentiation of W-20-17 cells, as well as BMP dependent chondrogenic differentiation of ATDC5 cells. Interestingly, hCV-2 messenger RNA is expressed at high levels in human primary chondrocytes, whereas expression in primary human osteoblasts is low. These results suggest that hCV-2 may regulate BMP responsiveness of osteoblasts and chondrocytes in vivo. Taken together we have shown that contrary to the function predicted from the fruit fly, Crossveinless-2 is a novel inhibitor of BMP function.  相似文献   

4.
Signaling by bone morphogenetic proteins (BMPs) plays a central role in early embryonic patterning, organogenesis, and homeostasis in a broad range of species. Chordin, an extracellular antagonist of BMP signaling, is thought to readily diffuse in tissues, thus forming gradients of BMP inhibition that result in reciprocal gradients of BMP signaling. The latter determine cell fates along the embryonic dorsoventral axis. The secreted protein Twisted Gastrulation (TSG) is thought to help shape BMP signaling gradients by acting as a cofactor that enhances Chordin inhibition of BMP signaling. Here, we demonstrate that mammalian Chordin binds heparin with an affinity similar to that of factors known to functionally interact with heparan sulfate proteoglycans (HSPGs) in tissues. We further demonstrate that Chordin binding in mouse embryonic tissues was dependent upon its interaction with cell-surface HSPGs and that Chordin bound to cell-surface HSPGs (e.g. syndecans), but not to basement membranes containing the HSPG perlecan. Surprisingly, mammalian TSG did not bind heparin unless prebound to Chordin and/or BMP-4, although Drosophila TSG has been reported to bind heparin on its own. Results are also presented that indicate that Chordin-HSPG interactions strongly potentiate the antagonism of BMP signaling by Chordin and are necessary for the retention and uptake of Chordin by cells. These data and others regarding Chordin diffusion have implications for the paradigm of how Chordin is thought to regulate BMP signaling in the extracellular space and how gradients of BMP signaling are formed.  相似文献   

5.
Vertebrate Crossveinless-2 (CV2) is a secreted protein that can potentiate or antagonize BMP signaling. Through embryological and biochemical experiments we find that: (1) CV2 functions as a BMP4 feedback inhibitor in ventral regions of the Xenopus embryo; (2) CV2 complexes with Twisted gastrulation and BMP4; (3) CV2 is not a substrate for tolloid proteinases; (4) CV2 binds to purified Chordin protein with high affinity (K(D) in the 1 nM range); (5) CV2 binds even more strongly to Chordin proteolytic fragments resulting from Tolloid digestion or to full-length Chordin/BMP complexes; (6) CV2 depletion causes the Xenopus embryo to become hypersensitive to the anti-BMP effects of Chordin overexpression or tolloid inhibition. We propose that the CV2/Chordin interaction may help coordinate BMP diffusion to the ventral side of the embryo, ensuring that BMPs liberated from Chordin inhibition by tolloid proteolysis cause peak signaling levels.  相似文献   

6.
The BMP4 signaling pathway plays key roles during early embryonic development and for maintenance of adult homeostasis. In the extracellular space, BMP4 activity is regulated by a group of interacting molecules including the BMP antagonist Chordin, the metalloproteinase Tolloid and Twisted gastrulation (Tsg). In this study, we identified Biglycan (Bgn), a member of the small leucine-rich proteoglycan family, as a new extracellular modulator of BMP4 signaling. Xenopus Bgn (xBgn) is expressed uniformly in the ectoderm and mesoderm and their derivatives during development. Microinjection of Bgn mRNA induced secondary axes, dorsalized the mesoderm and inhibited BMP4 activity in Xenopus embryos. Biochemical experiments showed that Bgn binds BMP4 and Chordin, interaction that increased binding of BMP4 to Chordin. Bgn was also able to improve the efficiency of Chordin-Tsg complexes to block BMP4 activity. Using antisense morpholinos, we demonstrated that Bgn required Chordin to induce double axes in Xenopus. This work unveiled a new function for Bgn, its ability to regulate BMP4 signaling through modulation of Chordin anti-BMP4 activity.  相似文献   

7.
Three cysteine analogues of bone morphogenetic protein (BMP)-2, BMP2A2C, BMP2N56C, and BMP2E96C, were generated in order to enable the attachment of SH-reactive poly(ethylene glycol) (PEG) at specific sites. Three different approaches (Ap) were used for SH-specific PEGylation: (Ap1) reaction of glutathione activated proteins with thiol PEG; (Ap2) reaction of DTT reduced proteins with orthopyridyl disulfide PEG; (Ap3) reaction of DTT reduced proteins with maleimide PEG. Non-, mono-, and di-PEGylated BMP-2 analogues could be separated by RP-HPLC. Trypsin digestion of PEGylated proteins and Trypsin and GluC double-digestion of N-ethylmaleimide-labeled proteins confirmed that the modifications were site-specific. Surface plasmon resonance analysis of type I and type II receptor binding of the PEGylated BMP-2 analogues revealed that all three PEGylation approaches were equivalent. PEGylation at positions 2 and 96 caused a similar decrease in receptor affinity. PEGylation at position 56 resulted in a larger decrease in affinity for both types of receptors. Mono-PEGylated BMP-2 analogues exhibited intermediate affinities in comparison with unmodified and di-PEGylated proteins. However, the biological activity of the PEGylated BMP-2 analogues as measured in alkaline phosphatase assay was higher than BMP-2 wild-type for the PEGylated BMP2A2C, slightly reduced for the BMP2N56C, and strongly reduced for the BMP2E96C. These results taken together indicate that specific attachment of PEG at engineered sites of BMP-2 is possible and that the attachment site is critical for biological activity. Furthermore, the biological activity of PEGylated BMP-2 analogues in cell culture seems to be determined not only by receptor affinity, but also by other factors such as protein solubility and stability. It is also discussed that the attached PEG interferes with the binding of BMP-2 to modulator proteins, co-receptors, or heparinic sites of proteoglycans in the extracellular matrix.  相似文献   

8.
Vertebrate bone morphogenetic protein 1 (BMP-1) and Drosophila Tolloid (TLD) are prototypes of a family of metalloproteases with important roles in various developmental events. BMP-1 affects morphogenesis, at least partly, via biosynthetic processing of fibrillar collagens, while TLD affects dorsal-ventral patterning by releasing TGFbeta-like ligands from latent complexes with the secreted protein Short Gastrulation (SOG). Here, in a screen for additional mammalian members of this family of developmental proteases, we identify novel family member mammalian Tolloid-like 2 (mTLL-2) and compare enzymatic activities and expression domains of all four known mammalian BMP-1/TLD-like proteases [BMP-1, mammalian Tolloid (mTLD), mammalian Tolloid-like 1 (mTLL-1), and mTLL-2]. Despite high sequence similarities, distinct differences are shown in ability to process fibrillar collagen precursors and to cleave Chordin, the vertebrate orthologue of SOG. As previously demonstrated for BMP-1 and mTLD, mTLL-1 is shown to specifically process procollagen C-propeptides at the physiologically relevant site, while mTLL-2 is shown to lack this activity. BMP-1 and mTLL-1 are shown to cleave Chordin, at sites similar to procollagen C-propeptide cleavage sites, and to counteract dorsalizing effects of Chordin upon overexpression in Xenopus embryos. Proteases mTLD and mTLL-2 do not cleave Chordin. Differences in enzymatic activities and expression domains of the four proteases suggest BMP-1 as the major Chordin antagonist in early mammalian embryogenesis and in pre- and postnatal skeletogenesis.  相似文献   

9.
Bone morphogenetic proteins (BMPs) are expressed during osteogenesis and their action is regulated by corresponding BMP inhibitors. Chordin (a well recognized BMP inhibitor) and BMP-2 are expressed during osteogenic differentiation of human mesenchymal stem cells. Chordin inhibition induces human mesenchymal stem cell differentiation and reduces their proliferation by increasing BMP-2 bioavailability. The potential of suppressing BMP inhibitors is emerging as a biological therapeutic target in bone tissue engineering, because it results in an unopposed synergy between the various growth factors that are involved in osteogenesis, within their physiological milieu.  相似文献   

10.
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway.  相似文献   

11.
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway.  相似文献   

12.
The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs.  相似文献   

13.
Gremlin is a glycoprotein that binds and antagonizes the actions of bone morphogenetic proteins (BMPs) -2, -4, and -7. Gremlin appears to activate the extracellular regulated kinase (ERK) pathway in endothelial and tumor cells, and as a consequence to have direct cellular effects. To determine whether gremlin has direct effects in osteoblasts, independent of its BMP binding activity, we examined its effects in ST-2 murine stromal cell lines and in primary cultures of murine calvarial osteoblasts. Gremlin did not activate Signaling mothers against decapentaplegic (Smad), and suppressed the BMP-2 induced Smad 1/5/8 phosphorylation and the transactivation of the BMP/Smad reporter construct 12xSBE-Oc-pGL3, confirming its BMPs antagonizing activity. Neither gremlin nor BMP-2 induced ERK 1/2 activation in ST-2 cells or calvarial osteoblasts. Moreover, slight changes in culture conditions induced the phosphorylation of ERK independent from BMP or gremlin exposure. In conclusion, gremlin inhibits BMP-2 signaling and activity, and does not have independent actions on ERK signaling in osteoblasts. Consequently, gremlin activity in osteoblasts can be attributed only to its BMP antagonizing effects.  相似文献   

14.
Dorsoventral patterning is regulated by a system of interacting secreted proteins involving BMP, Chordin, Xolloid and Twisted gastrulation (Tsg). We have analyzed the molecular mechanism by which Tsg regulates BMP signaling. Overexpression of Tsg mRNA in Xenopus embryos has ventralizing effects similar to Xolloid, a metalloprotease that cleaves Chordin. In embryos dorsalized by LiCl treatment, microinjection of Xolloid or Tsg mRNA restores the formation of trunk-tail structures, indicating an increase in BMP signaling. Microinjection of Tsg mRNA leads to the degradation of endogenous Chordin fragments generated by Xolloid. The ventralizing activities of Tsg require an endogenous Xolloid-like activity, as they can be blocked by a dominant-negative Xolloid mutant. A BMP-receptor binding assay revealed that Tsg has two distinct and sequential activities on BMP signaling. First, Tsg makes Chordin a better BMP antagonist by forming a ternary complex that prevents binding of BMP to its cognate receptor. Second, after cleavage of Chordin by Xolloid, Tsg competes the residual anti-BMP activity of Chordin fragments and facilitates their degradation. This molecular pathway, in which Xolloid switches the activity of Tsg from a BMP antagonist to a pro-BMP signal once all endogenous full-length Chordin is degraded, may help explain how sharp borders between embryonic territories are generated.  相似文献   

15.
Bone morphogenetic protein 1 (BMP-1) and mammalian Tolloid (mTLD), two proteinases encoded by Bmp1, provide procollagen C-proteinase (pCP) activity that converts procollagens I to III into the major fibrous components of mammalian extracellular matrix (ECM). Yet, although Bmp1(-/-) mice have aberrant collagen fibrils, they have residual pCP activity, indicative of genetic redundancy. Mammals possess two additional proteinases structurally similar to BMP-1 and mTLD: the genetically distinct mammalian Tolloid-like 1 (mTLL-1) and mTLL-2. Mice lacking the mTLL-1 gene Tll1 are embryonic lethal but have pCP activity levels similar to those of the wild type, suggesting that mTLL-1 might not be an in vivo pCP. In vitro studies have shown BMP-1 and mTLL-1 capable of cleaving Chordin, an extracellular antagonist of BMP signaling, suggesting that these proteases might also serve to modulate BMP signaling and to coordinate the latter with ECM formation. However, in vivo evidence of roles for BMP-1 and mTLL-1 in BMP signaling in mammals is lacking. To remove functional redundancy obscuring the in vivo functions of BMP-1-related proteases in mammals, we here characterize Bmp1 Tll1 doubly null mouse embryos. Although these appear morphologically indistinguishable from Tll1(-/-) embryos, biochemical analysis of cells derived from doubly null embryos shows functional redundancy removed to an extent enabling us to demonstrate that (i) products of Bmp1 and Tll1 are responsible for in vivo cleavage of Chordin in mammals and (ii) mTLL-1 is an in vivo pCP that provides residual activity observed in Bmp1(-/-) embryos. Removal of functional redundancy also enabled use of Bmp1(-/-) Tll1(-/-) cells in a proteomics approach for identifying novel substrates of Bmp1 and Tll1 products.  相似文献   

16.
Heparin is a glycosaminoglycan known to bind bone morphogenetic proteins (BMPs) and the growth and differentiation factors (GDFs) and has strong and variable effects on BMP osteogenic activity. In this paper we report our predictions of the likely heparin binding sites for BMP-2 and 14. The N-terminal sequences upstream of TGF-β-type cysteine-knot domains in BMP-2, 7 and 14 contain the basic residues arginine and lysine, which are key components of the heparin/HS-binding sites, with these residues being highly non-conserved. Importantly, evolutionary conserved surfaces on the beta sheets are required for interactions with receptors and antagonists. Furthermore, BMP-2 has electropositive surfaces on two sides compared to BMP-7 and BMP-14. Molecular docking simulations suggest the presence of high and low affinity binding sites in dimeric BMP-2. Histidines were found to play a role in the interactions of BMP-2 with heparin; however, a pK(a) analysis suggests that histidines are likely not protonated. This is indicative that interactions of BMP-2 with heparin do not require acidic pH. Taken together, non-conserved amino acid residues in the N-terminus and residues protruding from the beta sheet (not overlapping with the receptor binding sites and the dimeric interface) and not C-terminal are found to be important for heparin-BMP interactions.  相似文献   

17.
Inomata H  Haraguchi T  Sasai Y 《Cell》2008,134(5):854-865
Dorsal axial formation during vertebrate embryogenesis exhibits robust resistance to perturbations in patterning signals. However, how such stability is supported at the molecular level remains largely elusive. Here we show that Xenopus ONT1, an Olfactomedin-class secreted protein, stabilizes axial formation by restricting Chordin activity on the dorsal side. When ONT1 function is attenuated, the embryo becomes hyperdorsalized by a normally subeffective dose of Chordin. ONT1 binds Chordin and BMP1/Tolloid-class proteinases (B1TP) via distinct domains and acts as a secreted scaffold that enhances B1TP-mediated Chordin degradation by facilitating enzyme-substrate association. ONT1 is indispensable for fine-tuning BMP signaling in the axial tissue, and a similar role has been suggested for dorsally expressed BMPs such as ADMP. Simultaneous inhibition of ONT1 and dorsally expressed BMPs (ADMP and BMP2) synergistically caused drastic dorsalization. These results indicate that stable axial formation depends on two compensatory regulatory pathways involving ONT1/B1TP and dorsally expressed BMPs.  相似文献   

18.
Both latent transforming growth factor-beta (TGF-beta)-binding proteins fibrillins are components of microfibril networks, and both interact with members of the TGF-beta family of growth factors. Interactions between latent TGF-beta-binding protein-1 and TGF-beta and between fibrillin-1 and bone morphogenetic protein-7 (BMP-7) are mediated by the prodomain of growth factor complexes. To extend this information, investigations were performed to test whether stable complexes are formed by additional selected TGF-beta family members. Using velocity sedimentation in sucrose gradients as an assay, complex formation was demonstrated for BMP-7 and growth and differentiation factor-8 (GDF-8), which are known to exist in prodomain/growth factor complexes. Comparison of these results with complex formation by BMP-2, BMP-4 (full-length and shortened propeptides), BMP-10, and GDF-5 allowed us to conclude that all, except for BMP-2 and the short BMP-4 propeptides, formed complexes with their growth factors. Using surface plasmon resonance, binding affinities between fibrillin and all propeptides were determined. Binding studies revealed that the N-terminal end of fibrillin-1 serves as a universal high affinity docking site for the propeptides of BMP-2, -4, -7, and -10 and GDF-5, but not GDF-8, and located the BMP/GDF binding site within the N-terminal domain in fibrillin-1. Rotary shadowing electron microscopy of molecules of BMP-7 complex bound to fibrillin-1 confirmed these findings and also showed that prodomain binding targets the growth factor to fibrillin. Immunolocalization of BMP-4 demonstrated fibrillar staining limited to certain tissues, indicating tissue-specific targeting of BMP-4. These data implicate the fibrillin microfibril network in the extracellular control of BMP signaling and demonstrate differences in how prodomains target their growth factors to the extracellular space.  相似文献   

19.
骨形态发生蛋白(bone morphogenetic proteins, BMPs)是一类在发育过程中起重要作用的分子。除BMP-1外,其他BMP分子均属于转化生长因子-β(transforming growth factor-β, TGF-β)/BMP超家族的发育信号分子。在胚胎发育过程中,这些信号分子通过形成浓度梯度对背—腹轴各向异性分化进行调控。它们借助细胞表面受体的识别进行信号传导,参与调控细胞分化、增殖等活动。而BMP-1则属于细胞外基质金属蛋白酶超家族中的Tolloid蛋白酶家族。BMP-1通过水解其他BMP的抑制物(如脊索发生素,Chordin),达到促进其他BMP信号传导的目的。BMP-1、BMP和Chordin三者通过相互制约与相互促进等一系列作用,在背—腹沿线建立起稳定的BMP信号梯度。本文就BMP浓度梯度的形成及其稳态维持的机制进行回顾与总结。并在此基础上,对各个物种间BMP浓度梯度形成机制的异同,以及可能存在的协同进化进行比较、分析和讨论。  相似文献   

20.
A number of genetic and molecular studies have implicated Chordin in the regulation of dorsoventral patterning during gastrulation. Chordin, a BMP antagonist of 120 kDa, contains four small (about 70 amino acids each) cysteine-rich domains (CRs) of unknown function. In this study, we show that the Chordin CRs define a novel protein module for the binding and regulation of BMPs. The biological activity of Chordin resides in the CRs, especially in CR1 and CR3, which have dorsalizing activity in Xenopus embryo assays and bind BMP4 with dissociation constants in the nanomolar range. The activity of individual CRs, however, is 5- to 10-fold lower than that of full-length Chordin. These results shed light on the molecular mechanism by which Chordin/BMP complexes are regulated by the metalloprotease Xolloid, which cleaves in the vicinity of CR1 and CR3 and would release CR/BMP complexes with lower anti-BMP activity than intact Chordin. CR domains are found in other extracellular proteins such as procollagens. Full-length Xenopus procollagen IIA mRNA has dorsalizing activity in embryo microinjection assays and the CR domain is required for this activity. Similarly, a C. elegans cDNA containing five CR domains induces secondary axes in injected Xenopus embryos. These results suggest that CR modules may function in a number of extracellular proteins to regulate growth factor signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号