首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maximum submergence time of Canada geese was 18% of that of similarly sized Pekin ducks. Due to a smaller respiratory system volume the oxygen store of Canada geese was 82% of that of Pekin ducks, accounting for approximately 33% of the difference in underwater survival times. The respiratory properties and volume of the blood were similar in both species. Both species utilised approximately 79% of the respiratory oxygen store and 90% of the blood oxygen store. Therefore, most of the species difference in survival times was due to a less effective oxygen-conserving cardiovascular response (bradycardia, peripheral vasoconstriction) in Canada geese. Duck cardiac chronotropic sensitivity to hypoxia during submergence was twice that observed in geese. Furthermore, a lower hypoxic ventilatory response was observed in geese than in ducks. Density of monoamine varicosities in hindlimb artery walls was lower in geese than ducks. However, electrical stimulation of the hindlimb muscles did not cause ascending vasodilation during submergence in either species, perhaps due to higher levels of catecholamines in submerged geese. We conclude that the major difference between species is higher oxygen chemosensitivity in ducks which effects a much more rapid and efficacious oxygen-conserving response during forced submergence.Abbreviations ATPS · BTPS · STPD CNS central nervous system - EEG electroencephalogram - ECG electrocardiogram - EDTA ethylenediaminetetra-acetic acid - HPLC high performance liquid chromatography - fractional oxygen concentration of inspired air - pre-immersion fractional concentration of oxygen in the respiratory system - pre-emersion fractional concentration of oxygen in the respiratory system - [Hb] haemoglobin concentration - Hct haematocrit - HR heart rate - M B body mass - M b brain mass - M h heart mass - partial pressure of carbon dioxide in arterial blood - partial pressure of oxygen in arterial blood - SPG sucrose-potassium phosphate-glyoxylic acid - t d maximum underwater survival time - respiratory minute volume - V pl plasma volume - V rs respiratory system volume - accessible respiratory system oxygen store - total non-myoglobin-bound oxygen store - V tb blood volume - blood oxygen store  相似文献   

2.
Absorption of gas from alveoli is examined in a simplified model of the respiratory system during a stylized single breath consisting of constant inspiratory flow, constant expiratory flow, and breathholding. The equations describing gas behavior are general since they are based upon conservation of mass. The equations simplify considerably when gases that are not soluble in pulmonary tissue and/or blood are utilized. In a three-compartment model, diffusing capacity of the lung for carbon monoxide (D CO ) will be underestimated except when both uneven distribution of lung volume andD CO are present; under most circumstances, the standard clinical 10-s method [9] is at least as accurate as any other. When pulmonary capillary blood flow is calculated by the one point method [2] in a one-compartment lung, it is underestimated; in the three-compartment model, it is underestimated except when both uneven distribution of . and lung volume are present. The multiple single breath method [2] accurately measuresD CO and . Measurement of pulmonary tissue volume is improved by correcting the value of the intercept of acetylene absorption to the time when carbon monoxide apparently began rather than utilizing the beginning of inspiration.Nomenclature D CO diffusing capacity of the lung for CO (ml CO, STPD/min/mm Hg) - pulmonary capillary blood flow rate (L/min) - V t pulmonary tissue volume (L) - V A alveolar compartment volume (L) - V Ao alveolar compartment volume at conclusion of inspiratory flow (L) - inspiratory flow rate (L/sec) - expiratory flow rate (L/sec) - Bunsen coefficient of pulmonary tissue for test gas (ml test gas/ml tissue/atm) - Bunsen coefficient of pulmonary tissue for test gas (ml test gas/ml blood/atm) - F A fractional pressure of test gas in the alveolar compartment (atm)  相似文献   

3.
Summary Adelie penguins (Pygoscelis adeliae) experience a wide range of ambient temperatures (T a) in their natural habitat. We examined body temperature (T b), oxygen consumption ( ), carbon dioxide production ( ), evaporative water loss ( ), and ventilation atT a from –20 to 30 °C. Body temperature did not change significantly between –20 and 20°C (meanT b=39.3°C).T b increased slightly to 40.1 °C atT a=30°C. Both and were constant and minimal atT a between –10 and 20°C, with only minor increases at –20 and 30°C. The minimal of adult penguins (mean mass 4.007 kg) was 0.0112 ml/[g·min], equivalent to a metabolic heat production (MHP) of 14.9 Watt. The respiratory exchange ratio was approximately 0.7 at allT a. Values of were low at lowT a, but increased to 0.21 g/min at 30°C, equivalent to 0.3% of body mass/h. Dry conductance increased 3.5-fold between –20 and 30°C. Evaporative heat loss (EHL) comprised about 5% of MHP at lowT a, rising to 47% of MHP atT a=30°C. The means of ventilation parameters (tidal volume [VT], respiration frequency [f], minute volume [I], and oxygen extraction [ ]) were fairly stable between –20 and 10°C (VT did not change significantly over the entireT a range). However, there was considerable inter- and intra-individual variation in ventilation patterns. AtT a=20–30°C,f increased 7-fold over the minimal value of 7.6 breaths/min, and I showed a similar change. fell from 28–35% at lowT a to 6% atT a=30°C.Abbreviations C thermal conductance - EHL evaporative heat loss - oxygen extraction - f respiratory frequency - MHP metabolic heat production - evaporative water loss - LCT lower critical temperature - RE respiratory exchange ratio - T a ambient temperature - T b body temperature - rate of oxygen consumption - rate of carbon dioxide production - I inspiratory minute volume - VT tidal volume  相似文献   

4.
Altitudinal and seasonal effects on aerobic metabolism of deer mice   总被引:9,自引:0,他引:9  
Summary I compared the maximal aerobic metabolic rates ( ), field metabolic rates (FMR), aerobic reserves ( -FMR), and basal metabolic rates (BMR) of wild and recently captured deer mice from low (440 m) and high (3800 m) altitudes. To separate the effects of the thermal environment from other altitudinal effects, I examined mice from different altitudes, but similar thermal environments (i.e., summer mice from high altitude and winter mice from low altitude). When the thermal environment was similar, , FMR, and aerobic reserve of low and high altitude mice did not differ, but BMR was significantly higher at high altitude. Thus, in the absence of thermal differences, altitude had only minor effects on the aerobic metabolism of wild or recently captured deer mice.At low altitude, there was significant seasonal variation in , FMR, and aerobic reserve, but not BMR. BMR was correlated with , but not with FMR. The significant positive correlation of BMR with indicates a cost of high , because higher BMR increases food requirements and energy use during periods of thermoneutral conditions.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - partial pressure of oxygen - T a ambient temperature - T b body temperature - T e operative temperature - maximal aerobic metabolic rate  相似文献   

5.
Summary In the intertidal shore crab,Carcinus maenas, pH and values of the prebranchial venous hemolymph, and , the PO2 values of the arterialized cardiac hemolymph, , were measured, and the ventilatory activity was assessed by measuring the hydrostatic pressures at the exits of the epibranchial cavities, under four environmental conditions: normoxic water, normoxic air, hypoxic gas, hyperoxic gas.In the crab breathing normoxic air, was lower and higher than in animals breathing normoxic water. With the switch to hypoxic gas, ventilation increased and and decreased. With the switch to hyperoxic gas, ventilation decreased, and increased and decreased.Thus these crabs breathing air were not as well oxygenated as when breathing air-equilibrated water, and because of their low , they were relatively hypervetilating and hypocapnic compared to air-breathing vertebrates. Hyperoxic breathing, increasing and reducing ventilatory drive, led to increased . Conversely, was reduced by hypoxic breathing. These observations suggest that the gas exchanger of intertidal crabs is not as successfully designed for air breathing as that of land-colonizing insects and air-breathing vertebrates.  相似文献   

6.
Summary Gas conductance of the shell, rates of O2 consumption, CO2 production and air cell gas tensions were measured in pre-internal pipping, 19 day-old chicken eggs that were selected for a wide range in shell conductance. Regional conductance was measured in eggs with partially waxed shells.Surface-specific shell conductance was not uniform over the egg; it was over 3-fold higher at the poles than at the equator. Conductance was about 59% higher over the air cell than over the chorioallantoic part of the egg. Surface-specific perfusion was 12% higher in the air cell. Therefore the in the air cell was higher, and the lower, than values calculated for the whole egg. The mean difference in between the air cell and the chorioallantoic part of the egg was 14.8 Torr, and that of , was 7.0 Torr. These differences were somewhat dependent on total conductance. Respiratory gas exchange ratio ( ) was higher in the air cell (R=0.82) and lower in the chorioallantoic region (R=0.67) than for the whole egg (R=0.70). Air cell R increased slightly in eggs of higher total conductance.Mismatching of regional shell conductance and chorioallantoic perfusion contributes to a functional venous shunt that is partly responsible for nonequilibrium between the air cell and the blood in the chorioallantoic veins.Symbols and abbreviations D gas diffusity - F A fractional surface area - F G fractional conductance - G conductance - G diff diffusion conductance - G perf perfusion conductance - PA average gas pressure (O2 or CO2) - Pac gas pressure in air cell - PE gas pressure in respiratory chamber - Pca gas pressure over chorioallantois - perfusion  相似文献   

7.
Summary In order to determine the pH effect on the discharge of intrapulmonary chemoreceptors (IPC) not mediated through , we determined discharge frequency-ln relationships of 28 IPC from ten adult cockerels made acidotic by ingestion of feed containing 6% NH4Cl for 2 to 5 days. Blood buffer curves — the relationships between pH and — from these cockerels were shifted in parallel towards acidosis by 0.24 pH units (SE=±0.05) compared to control curves. The average slope of the IPC discharge frequenc-ln relationships was less negative than that reported for similar cockerels with normal acid-base balance and the average intercept was decreased. We conclude that pH has an effect on IPC discharge, independent of changes in ; this effect decreases IPC sensitivity to CO2. We calculate that a shift towards acidosis in the blood buffer curve of one pH unit causes the slope of the IPC discharge frequency-ln relationship to be less negative by 14.7±3.3 imp (s·ln )–1 and that for any acidotic shift in the blood buffer curve (pH), the average IPC discharge frequency=[–10.7+(14.7·pH)][ln( /25.5)]+3.37. Since IPC discharge is altered by changes in acid-base balance, IPC may contribute to the implementation of respiration responses during metabolic disturbances.Abbreviation IPC intrapulmonary chemoreceptor  相似文献   

8.
Summary Rosy finches (Leucosticte arctoa) breed at altitudes above 3500 m in eastern California. House finches (Carpodacus mexicanus) belong to the same subfamily (Carduelinae), but breed at much lower elevations. Oxygen consumption ( ) and ventilatory parameters of these two species were measured over a wide range of ambient temperatures (T a) at low altitude (LA; 150 m) and at high altitude (HA; 3800 m).Minimal nighttime 's of rosy finches and house finches at LA (T a=30°C) were close to allometrically predicted values for passerine birds. At both altitudes, increased linearly with decreasingT a betweenT a=20 and –10°C. Resting 's were slightly higher at HA than at LA on average.In both species, minute volume ( ) was inversely related toT a.T a-correlated increases in resulted from significant increases in both ventilatory frequency (f) and tidal volume (V T) at both altitudes. Oxygen extraction efficiency ( ) was independent ofT a in rosy finches at LA, but declined significantly with decreasingT a in rosy finches at HA and in house finches at both altitudes.At a givenT a, both species had significantly greater (BTPS) at HA than at LA. Altitude-correlated increases in resulted primarly from increases inf with little change inV T. was significantly greater at HA than at LA in both species.In spite of the difference in altitudinal distributions of rosy finches and house finches, there were few conspicuous interspecific differences in metabolic or ventilatory adaptation to altitude or lowT a over the range of conditions examined.Symbols and abbreviations BMR basal metabolic rate - BTPS at body temperature and pressure, saturated - oxygen extraction efficiency - f ventilation frequency - h mean coefficient of heat transfer - HA high altitude - instantaneous oxygen consumption - LA low altitude - RH relative humidity - SMR standard metabolic rate - STPD standard temperature and pressure, dry - T temperature - a ambient - b body - lc lower critical of thermoneutral zone - minute volume - V T tidal volume  相似文献   

9.
Summary Oxygen consumption was measured at rest and during spontaneous activity at body temperatures of 25 and 35°C in 14 fasting Savanna monitor lizards,Varanus exanthematicus ranging in weight from 172 to 7500 g. The allometric relationship between metabolic rate at 25°C and body weight (W) is given by: (ml O2 STPD·g–1·hr–1)=0.88W –0.43 (Fig. 2). Although statistical comparisons are equivocal, this intraspecific size dependence exceeds that reported for interspecific comparisons among reptiles and other vertebrate groups (Fig 3). A reproducible diurnal pattern of activity was observed in undisturbed animals with minimum values of between 2400 and 0800 h (Fig. 1). Spontaneous activity and generally reached peak values between 1200 and 2000 hrs. The average ratio of active aerobic metabolic rate (AMR) to minimum (standard) aerobic metabolic rate (SMR) was 8.2. This voluntary AMR/SMR inVaranus exceeds the AMR/SMR for most reptiles stimulated to exhaustion. The high aerobic capacity is consistent with other evidence for efficient exchange and transport of respiratory gases inV. exanthematicus; e.g., low or absent intracardiac shunt flow resulting in high arterial saturation and low ventilation and perfusion requirements.  相似文献   

10.
Summary Six Standardbred horses were used to evaluate the time course of pulmonary gas exchange, ventilation, heart rate (HR) and acid base balance during different intensities of constant-load treadmill exercise. Horses were exercised at approximately 50%, 75% and 100% maximum oxygen uptake ( max) for 5 min and measurements taken every 30 s throughout exercise. At all work rates, the minute ventilation, respiratory frequency and tidal volume reached steady state values by 60 s of exercise. At 100% max, the oxygen consumption ( ) increased to mean values of approximately 130 ml/kg·min, which represents a 40-fold increase above resting . At the low and moderate work rates, showed no significant change from 30 s to 300 s of exercise. At the high work rate, the mean at 30 s was 80% of the value at 300 s. The HR showed no significant change over time at the moderate work rate but differing responses at the low and high work rates. At the low work rate, the mean HR decreased from 188 beats/min at 30 s to 172 beats/min at 300 s exercise, whereas at the high work rate the mean HR increased from 204 beats/min at 30 s to 221 beats/min at 300 s exercise. No changes in acid base status occurred during exercise at the low work rate. At the moderate work rate, a mild metabolic acidosis occurred which was nonprogressive with time, whereas the high work rate resulted in a progressive metabolic acidosis with a base deficit of 16 mmol/l by 300 s exercise. It is concluded that the kinetics of gas exchange during exercise are more rapid in the horse than in man, despite the relatively greater change in in the horse when going from rest to high intensity exercise.Symbols and abbreviations E minute ventilation - V T tidal volume - oxygen uptake - carbon dioxide output - oxygen pulse - ventilatory equivalent for oxygen - ventilatory equivalent for carbon dioxide - R respiratory exchange ratio - HR heart rate - SBC standard bicarbonate - STPD standard temperature and pressure dry - BTPS body temperature and pressure saturated - arterial oxygen content - arteriovenous oxygen content difference - Rf respiratory frequency  相似文献   

11.
Summary The effects of ambient temperature (T a) on ventilation and gas exchange in chukar partridges (Alectoris chukar) were determined after acclimation to low and high altitute (LA and HA; 340 and 3,800 m, respectively).At both LA and HA, oxygen consumption ( ) increased with decreasingT a atT a from 20 to –20°C. AtT a of 35 to 40°C, increased above thermoneutral values at HA but remained constant and minimal at LA. Water loss rates increased rapidly atT a>30°C at both altitudes as birds began to pant. Ventilation rates (f) during panting were 5-to 23-fold greater than the minimalf at thermoneutralT a.Increased atT a below thermoneutrality was supported by increased minute volume (V i) at both altitudes. The change inV i was primarily a function of changing tidal volume (V t), althoughf increased slightly asT a declined. Oxygen extraction ( ) remained fairly constant atT a below 20°C at both altitudes. BothV t and were considerably lower when birds were panting than at lowerT a.Chukars showed few obvious ventilatory adaptations to HA. The 35% change in between 340 and 3,800 m was accommodated by a corresponding change inV i (btps), most of which was accomplished by increasedf at HA, along with a slight increase in .Abbreviations and symbols HA high altitude - LA low altitude - rate of evaporative water loss - oxygen extraction efficiency - f respiratory frequency - V t tidal volume - V i minute volume - BMR basal metabolic rate - MHP metabolic heat production  相似文献   

12.
Summary Thermogenic incubation has been documented in two large species of pythons, but the phenomenon has not been studied in small species with concomitantly large heat transfer coefficients. We describe behavior, metabolic rates, mass changes, and temperature relations for adult ball pythons (Python regius), the smallest member of the genus, during the reproductive cycle. Egg and hatchling metabolism and hatchling growth rates were also examined.Rates of oxygen consumption ( ) of both gravid and non-gravid snakes showed typical ectothermic responses to changing ambient temperature (T a). TheQ 10 forT a's of 20–35°C was 2.2–2.3. The of gravid females was significantly greater than that of non-gravid snakes at allT a. Maximum oxygen consumption ( max) during forced exercise was about 12 times resting atT a=30°C.Eggs (5–6 per female) were laid in April. Total clutch mass was approximately 32% of the females' pre-oviposition mass. After oviposition, mother snakes coiled tightly around their clutches and remained in close attendance until the eggs hatched in June. Sudden decreases inT a elicited abrupt but transient 2- to 4-fold increases in the of incubating females. Similar responses were not observed in non-incubating snakes. The steady-state of incubating females was independent ofT a. In no case was body temperature (T b) elevated more than a few tenths of a degree aboveT a in steady-state conditions.The of developing eggs increased sigmoidally through the 58–70 day incubation period. Total oxygen consumption during incubation atT a=29.2°C was about 3.61 per egg. Young snakes quadrupled their mass during their first year of growth.Compared to larger python species which are endothermic during incubation, ball pythons have similar aerobic scopes and higher mass-specific max. However, effective endothermy in ball pythons is precluded by high thermal conductance and limited energy stores.  相似文献   

13.
Summary Control of extracellular acid-base status was examined during activity and dormancy inOtala lactea (Pulmonata, Helicidae). Active snails showed little variation in hemolymph pH and at constant temperature. With increase of temperature, hemolymph increased from about 6 Torr at 5°C to 13 Torr at 24°C and pH decreased by about 0.017 pH units/°C, a pattern consistent with alphastat regulation of pH via ventilatory control of .During dormancy, mean hemolymph increased to about 50 Torr. Venous pH declined by about 0.4 units due to hypercapnia and fluctuated more widely than in active snails due to variability of . Hemolymph pH declined further in prolonged dormancy due to progressive metabolic acidosis; after one year of dormancy the mean hemolymph pH was about 0.8 units lower than that of active snails at similar temperature.Active snails exposed experimentally to high showed a large increase in hemolymph [HCO 3 ]. However, [HCO 3 ] declined by up to 50% during dormancy, despite the naturally occurring hypercapnia. Hemolymph osmolality and the concentrations of solutes other than [HCO 3 ] increased with increasing duration of dormancy. Concentrations of magnesium and calcium increased about 2.5 times more rapidly than those of sodium and chloride, indicating that acidosis is partially offset by the dissolution of carbonates from the shell or tissues.  相似文献   

14.
Summary Simultaneous measurements of pulmonary and cutaneous oxygen and carbon dioxide exchange, pulmonary ventilation and heart rate were made on the diamondback water snake,Natrix rhombifera at 28°C using body plethysmography. Resting lung volume, maximum lung volume and tracheal volume were also measured.The following mean values were measured in undisturbed snakes breathing room air: total (pulmonary and cutaneous) O2 uptake 46 mol · (kg min)–1; total CO2 output, 49 mol · (kg min)–1; tidal volume, 12 ml (BTPS) · kg–1; ventilatory rate, 6.9 min–1; heart rate, 42 min–1. From the measurements of tracheal volume, the effective (alveolar) ventilation was estimated as approximately 70% of total ventilation resulting in effective pulmonary and of 130 Torr and 20 Torr respectively. Cutaneous exchange accounted for 8.1% of the total and 12.4% of the total .Resting lung volume of anaesthetized snakes was 75 ml (BTPS) · kg–1, maximum lung volume was 341 ml (BTPS) · kg–1 and tracheal volume was 3.9 ml (BTPS) · kg–1.  相似文献   

15.
Summary In late February, seven box turtles were collected with body temperatures between 7 and 9°C. Ventilation, gas exchange and end-tidal and were recorded at 5, 10, 15 and 25°C, the animals being at each temperature for 2 to 3 weeks. There was a pronounced diurnal rhythm of breathing frequency at all temperatures. At 5°C the mean 24-h frequency was only 3.7 breaths h–1. At 15°C the frequency was 16 times higher with a 17-fold increase of ventilation. Oxygen uptake only changed from 3.4 to 12.7 ml·kg–1·h–1. Consequently, the ratio (ventilation, ml BTPS/O2 uptake, ml STPD) increased from 12.5 at 5°C to 48 at 15°C, but decreased to 24 at 25°C. The decrease of this ratio during cold exposure contrasts with an increase of the ratio during cooling earlier reported for fresh water turtles,Pseudemys. Cutaneous CO2 elimination was important at low temperature. This caused a decrease of the pulmonary gas exchange ratio so that end-tidal remained low at 5°C in spite of an end-tidal of only 54 Torr.  相似文献   

16.
Summary Oxygen binding properties of the hemocyanin-containing blood ofBuccinum undatum were examined in vitro and in vivo under normoxic ( 150 mmHg) and hypoxic ( 50 mmHg) conditions at 10°C. Blood pH and showed a decrease in vivo under hypoxic conditions. Oxygen uptake at high water , was about 18 ml O2/kg·h (wet weight) and the critical oxygen tension between 25 and 50 mm Hg. In vitro the O2 binding to hemocyanin showedn-values independent of pH, while both O2 affinity and oxygen carrying capacity were strongly pH dependent. Oxygen affinity increased below pH=8.1 and thus showed a pronounced reversed Bohr shift in the physiological pH range (7.5<pH<8.1). The oxygen carrying capacity similarly increased markedly with falling pH in the physiological pH range (reversed Root shift). Astrup titration curves showed a metabolic and respiratory acidosis under hypoxic conditions ( 50 mm Hg). The role of hemocyanin in the transport of oxygen in relation to ambient O2 availability is discussed.  相似文献   

17.
Summary The rate of oxygen consumption ( ) by skeletal muscle was investigated in isolated perfused hindlimbs of laboratory rats and lemmings (Lemmus). In both species, increased in proportion to blood flow rate, even at flow rates 4–5 times above resting level. The slope of the line relating to skeletal muscle blood flow was significantly greater in the lemming than in the rat. This may be related to the inverse relationship between body weight and metabolic rate. These data support the hypothesis that in small animals a dependent relationship exists between blood flow and skeletal muscle .  相似文献   

18.
Summary In seawater (SW)-adaptedMugil andFundulus, gill effluxes of Na+ and of Cl and the simultaneously recorded transgill potential (P.D.) differ according to whether they are measured in stressed or rested animals.In rested animals of the two species, transfer to Ringer's solution considerably reduces the P.D. but not . InFundulus, is also decreased. Transfer of the two species from SW to fresh water (FW) reduces and by 75 to 85% and leads to a large inversion of P.D. When K+ is added to FW, a gill depolarization occurs, as well as a large increase of and .These results suggest that: 1) the P.D. originates primarily from the diffusion of cations, the gill permeability to Na+ ( ) being greater than that to Cl ( ), 2) a Cl/Cl exchange independent of P.D. is associated with the Cl pump; 3) Cl pump activity is linked to Na+/K+ exchange which in turn is associated to a Na+/Na+ exchange diffusion mechanism.In stressed individuals of the two species, the P.D. in SW, as well as the P.D. changes observed during transfer experiments, are considerably reduced. The decrease of and observed after transfer from SW to FW are also minimised. Changes are smaller inFundulus. The decrease of P.D. characterizing stressed animals may be at least in part due to a 3 to 4 fold increase of which becomes equal to in both species.As a result of stress, the K+-activated Na+ and Cl excretion mechanisms are totally inhibited inFundulus and partially so inMugil.Stress response seems more intense inFundulus and recovery from stress faster inMugil.  相似文献   

19.
Summary The structure, dimensions and gas exchanging properties of the lungs of the Australian Carpet PythonMorelia spilotes variegata have been studied by dissection, by sampling lung gas and pulmonary venous blood and by using radioactive techniques to monitor distribution of ventilation ( ) and blood flow ( ). The lungs have alveolar and saccular parts (mean capacities 10.2 and 129.3 ml/kg body weight, respectively). The sacs store inspired air creating a flow through situation which abolishes the dead space effect, prevents large expansions of the alveolar lung and allows gas exchange during both inspiration and expiration. Gas exchange was measured in intubated snakes in the resting and active states at 20–26 °C. In the resting state, respiratory frequency, tidal volume and ventilation were 1.72±0.56/min, 14.8±10.8 ml/kg, 22.04±7.75 ml/kg · min and pulmonary venousP O 2,P CO 2 and pH were 58.9±14.5 Torr, 21.5±4.2 Torr, and 7.55±0.07 Torr, respectively. R. Q. was low, 0.65±0.11. In the active state both ventilation ( ) and cardiac output increase and blood flow is redistributed more evenly along the alveolar lung, enabling increased O2 uptake. Since blood flow ( ) in the alveolar lung is stratified (Read and Donnelly, 1972) redistribution of during activity is proposed as a possible reserve capacity for O2 extraction by reptilian lungs.  相似文献   

20.
Summary Nest humidity ( ) under an incubating bantam hen was measured at ambient ranging from 1.3 to 25.0 mmHg. Weight loss of eggs was recorded in clutches of varying size. Nest and ambient were also measured in wild incubating willow ptarmigan nests in dry and wet habitats.Nest increased linearly with ambient in a way predictable on the assumption that the water vapour conductance ( ) of brood patch skin, plumage and eggs were constant and independent of ambient . Nest was also dependent of clutch size. Egg dehydration was quantitatively predicted from measured values and the laws of diffusion.Our findings confirm earlier conclusions that the adult bird does not actively regulate nest at varying ambient . Birds can presumably achieve appropriate egg dehydration by a strategy combining nest site, nest construction, egg shell conductance and incubation behaviour which meets the requirements of their breeding climate.Abbreviations water vapur pressure - water vapur conductance - water flux  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号