首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Dok (for downstream of tyrosine kinases) proteins are a newly identified family of docking molecules that are characterized by the presence of an amino-terminal pleckstrin homology (PH) domain, a central putative phosphotyrosine-binding (PTB) domain and numerous potential sites of tyrosine phosphorylation [1] [2] [3] [4] [5] [6]. Here, we explore the potential role of the Dok family member Dok-R (also known as p56(Dok2) or FRIP) in signaling pathways mediated by the epidermal growth factor (EGF) receptor. An intact PTB domain in Dok-R was critical for its association with two PTB-binding consensus sites on the EGF receptor and the PH domain further contributed to stable in vivo binding and tyrosine phosphorylation of Dok-R. Multiple sites on Dok-R were tyrosine-phosphorylated following EGF stimulation; phosphorylated Tyr276 and Tyr304 are proposed to dock the tandem Src homology 2 (SH2) domains of the p21(Ras) GTPase-activating protein rasGAP and Tyr351 mediates an association with the SH2 domain of the adapter protein Nck. Interestingly, we have found that Dok-R could attenuate EGF-stimulated mitogen-activated protein (MAP) kinase activation independently of its association with rasGAP. Together, these results suggest that Dok-R has an important role downstream of growth factor receptors as a potential negative regulator of signal transduction.  相似文献   

2.
Dok, a 62-kDa Ras GTPase-activating protein (rasGAP)-associated phosphotyrosyl protein, is thought to act as a multiple docking protein downstream of receptor or non-receptor tyrosine kinases. Cell adhesion to extracellular matrix proteins induced marked tyrosine phosphorylation of Dok. This adhesion-dependent phosphorylation of Dok was mediated, at least in part, by Src family tyrosine kinases. The maximal insulin-induced tyrosine phosphorylation of Dok required a Src family kinase. A mutant Dok (DokDeltaPH) that lacked its pleckstrin homology domain failed to undergo tyrosine phosphorylation in response to cell adhesion or insulin. Furthermore, unlike the wild-type protein, DokDeltaPH did not localize to subcellular membrane components. Insulin promoted the association of tyrosine-phosphorylated Dok with the adapter protein NCK and rasGAP. In contrast, a mutant Dok (DokY361F), in which Tyr361 was replaced by phenylalanine, failed to bind NCK but partially retained the ability to bind rasGAP in response to insulin. Overexpression of wild-type Dok, but not that of DokDeltaPH or DokY361F, enhanced the cell migratory response to insulin without affecting insulin activation of mitogen-activated protein kinase. These results identify Dok as a signal transducer that potentially links, through its interaction with NCK or rasGAP, cell adhesion and insulin receptors to the machinery that controls cell motility.  相似文献   

3.
Integrins play a fundamental role in cell migration and adhesion; knowledge of how they are regulated and controlled is vital for understanding these processes. Recent work showed that Dok1 negatively regulates integrin activation, presumably by competition with talin. To understand how this occurs, we used NMR spectroscopy and x-ray crystallography to investigate the molecular details of interactions with integrins. The binding affinities of beta3 integrin tails for the Dok1 and talin phosphotyrosine binding domains were quantified using 15N-1H hetero-nuclear single quantum correlation titrations, revealing that the unphosphorylated integrin tail binds more strongly to talin than Dok1. Chemical shift mapping showed that unlike talin, Dok1 exclusively interacts with the canonical NPXY motif of the beta3 integrin tail. Upon phosphorylation of Tyr 747 in the beta3 integrin tail, however, Dok1 then binds much more strongly than talin. Thus, we show that phosphorylation of Tyr 747 provides a switch for integrin ligand binding. This switch may represent an in vivo mechanism for control of integrin receptor activation. These results have implications for the control of integrin signaling by proteins containing phosphotyrosine binding domains.  相似文献   

4.
To date, five members of the downstream of tyrosine kinase (Dok) family have been characterized. In T cells, two members, Dok-1 and Dok-2, are expressed. CD2 or CD28 stimulation, but not CD3/TCR stimulation, induces Dok phosphorylation. Recent evidence suggests that they act as negative regulators of the CD2 and CD28 signaling pathways. To identify the molecular mechanisms involved in Dok-mediated inhibition, we have identified proteins that bind to the phosphotyrosine-binding (PTB) domain of Dok-1 and Dok-2. We showed that the Dok PTB domain mediates phosphotyrosine-dependent homotypic and heterotypic interactions of Dok-1 and Dok-2. Moreover, in CD2-stimulated Jurkat cells, Dok-1 coimmunoprecipitates with tyrosine-phosphorylated Dok-2. To study the involvement of PTB-mediated oligomerization in Dok function, we have generated Jurkat clones overexpressing Dok-1 or Dok-2 with a mutation that prevents oligomerization (in either the PTB domain or Tyr146 of Dok-1 and Tyr139 of Dok-2). These mutations abrogate CD2-induced phosphorylation and the ability of Dok-1 or Dok-2 to inhibit CD2-induced ERK1/2 and NFAT activation. Moreover, overexpression of Dok-1Y146F or Dok-2Y139F interferes with CD2-induced phosphorylation of endogenous Dok, whereas overexpression of PTB mutant or wild-type Dok does not. Taken together, these data indicate that PTB-mediated oligomerization of Dok-1 and Dok-2 represents an essential step for Dok phosphorylation and function.  相似文献   

5.
Shc family proteins serve as phosphotyrosine adaptor molecules in various receptor-mediated signaling pathways. In mammals, three distinct Shc genes have been described that encode proteins characterized by two phosphotyrosine-interaction modules, an amino-terminal phosphotyrosine binding (PTB) domain and a carboxy-terminal Src homology 2 domain. Here, we report the analysis of an uncharacterized fourth Shc family protein, ShcD/Shc4, that is expressed in adult brain and skeletal muscle. Consistent with this expression pattern, we find that ShcD can associate via its PTB domain with the phosphorylated muscle-specific kinase (MuSK) receptor tyrosine kinase and undergo tyrosine phosphorylation downstream of activated MuSK. Interestingly, additional sites of tyrosine phosphorylation, including a novel Grb2 binding site, are present on ShcD that are not found in other Shc family proteins. Activation of MuSK upon agrin binding at the neuromuscular junction (NMJ) induces clustering and tyrosine phosphorylation of acetylcholine receptors (AChRs) required for synaptic transmission. ShcD is coexpressed with MuSK in the postsynaptic region of the NMJ, and in cultured myotubes stimulated with agrin, expression of ShcD appears to be important for early tyrosine phosphorylation of the AChR. Thus, we have characterized a new member of the Shc family of docking proteins, which may mediate a specific aspect of signaling downstream of the MuSK receptor.  相似文献   

6.
Dok1 is a common substrate of activated protein-tyrosine kinases. It is rapidly tyrosine-phosphorylated in response to receptor tyrosine activation and interacts with ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. In chronic myelogenous leukemia cells, it has shown constitutive phosphorylation. The N-terminal phosphotyrosine binding (PTB) domain of Dok1 can recognize and bind specifically to phosphotyrosine-containing motifs of receptors. Here we report the crystal structure of the Dok1 PTB domain alone and in complex with a phosphopeptide derived from RET receptor tyrosine kinase. The structure consists of a beta-sandwich composed of two nearly orthogonal, 7-stranded, antiparallel beta-sheets, and it is capped at one side by a C-terminal alpha-helix. The RET phosphopeptide binds to Dok1 via a surface groove formed between strand beta5 and the C-terminal alpha-helix of the PTB domain. The structures reveal the molecular basis for the specific recognition of RET by the Dok1 PTB domain. We also show that Dok1 does not recognize peptide sequences from TrkA and IL-4, which are recognized by Shc and IRS1, respectively.  相似文献   

7.
Src protein-tyrosine kinase structure and regulation   总被引:2,自引:0,他引:2  
Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPalpha displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the alphaD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu(4)Tyr).  相似文献   

8.
Tyrosine phosphorylation plays a critical role in many regulatory aspects of cellular signaling, and dephosphorylation of phosphotyrosine residues is crucial for termination of signals initiated by tyrosine kinases. Previous work has shown that the tyrosine kinase Src phosphorylates Tyr644 on phosphatidylinositol phosphate kinase type I (PIPKI) gamma661 in a focal adhesion kinase-dependent manner. Phosphorylation of this residue is essential for high affinity binding of PIPKI gamma661 to the focal adhesion protein talin and for targeting of PIPKI gamma661 to focal adhesions. A yeast two-hybrid screen performed with the C-terminal 178-amino acid tail of PIPKI gamma661 identified an interaction with the phosphatase domain of the tyrosine phosphatase Shp-1. The interaction between PIPKI gamma661 and Shp-1 was confirmed via co-immunoprecipitation from HEK293 cell lysates. In addition, Src-phosphorylated PIPKI gamma661 is a substrate for Shp-1, and Shp-1 modulates both the association between PIPKI gamma661 and talin and the targeting of PIPKI gamma661 to focal adhesions in mammalian cells. Finally, we showed that Shp-1 phosphatase activity is inhibited by the product of PIPKI gamma661, phosphatidylinositol 4,5-bisphosphate, in vitro. These combined results suggest a model in which the reciprocal actions of Src tyrosine kinase and Shp-1 tyrosine phosphatase dynamically regulate the association between PIPKI gamma661 and talin.  相似文献   

9.
10.
The protein tyrosine kinase Pyk2 acts as an upstream regulator of mitogen-activated protein (MAP) kinase cascades in response to numerous extracellular signals. The precise molecular mechanisms by which Pyk2 activates distinct MAP kinase pathways are not yet fully understood. In this report, we provide evidence that the protein tyrosine kinase Src and adaptor proteins Grb2, Crk, and p130Cas act as downstream mediators of Pyk2 leading to the activation of extracellular signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK). Pyk2-induced activation of Src is necessary for phosphorylation of Shc and p130Cas and their association with Grb2 and Crk, respectively, and for the activation of ERK and JNK cascades. Expression of a Grb2 mutant with a deletion of the amino-terminal Src homology 3 domain or the carboxyl-terminal tail of Sos strongly reduced Pyk2-induced ERK activation, with no apparent effect on JNK activity. Grb2 with a deleted carboxyl-terminal Src homology 3 domain partially blocked Pyk2-induced ERK and JNK pathways, whereas expression of dominant interfering mutants of p130Cas or Crk specifically inhibited JNK but not ERK activation by Pyk2. Taken together, our data reveal specific pathways that couple Pyk2 with MAP kinases: the Grb2/Sos complex connects Pyk2 to the activation of ERK, whereas adaptor proteins p130Cas and Crk link Pyk2 with the JNK pathway.  相似文献   

11.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its C-terminal tail. The repressed state is achieved through intramolecular interactions involving the phosphorylated tail, the Src homology 2 (SH2) domain and the SH3 domain. Both the SH2 and SH3 domains have also been shown to mediate the intermolecular interaction of Src with several proteins. To test which amino acids of the Src SH3 domain are important for these interactions, and whether the intra- and intermolecular associations involve the same residues, we carried out a detailed mutational analysis of the presumptive interaction surface. All mutations of conserved hydrophobic residues had an effect on both inter- and intramolecular interactions of the Src SH3 domain, although not all amino acids were equally important. Chimeric molecules in which the Src SH3 domain was replaced with those of spectrin or Lck showed derepressed kinase activity, whereas a chimera containing the Fyn SH3 domain was fully regulated. Since spectrin and Lck SH3 domains share the conserved hydrophobic residues characteristic of SH3 domains, other amino acids must be important for specificity. Mutational analysis of non- or semi-conserved residues in the RT and n-Src loops showed that some of these were also involved in inter- and intramolecular interactions. Stable transfection of selected SH3 domain mutants into NIH-3T3 cells showed that despite elevated levels of phosphotyrosine, the cells were morphologically normal, indicating that the SH3 domain was required for efficient transformation of NIH-3T3 cells by Src.  相似文献   

12.
SH2 domains are protein modules which bind tyrosine phosphorylated sequences in many signaling pathways. These domains contain two regions with specialized functions: residues in one region form a deep pocket into which the phosphotyrosine of the target inserts, while the other region contains the so-called "specificity determining residues" which interact with the three residues C-terminal to the phosphotyrosine in the target. Here, titration calorimetry and site-directed mutagenesis have been used to probe the importance of eight specificity determining residues of the SH2 domain of the Src kinase involved in contacts with its tyrosine phosphorylated consensus peptide target (sequence pYEEI where pY indicates a phosphotyrosine). Mutating six of these eight residues to Ala individually, resulted in a threefold or less loss in binding affinity; hence the majority of the residues in the specificity determining region are by themselves of minimal importance for binding. Two residues were found to have significant effects on binding: Tyr betaD5 and Lys betaD3. Tyr betaD5 was the most crucial residue as evidenced by the 30-fold loss in affinity when Tyr betaD5 is mutated to Ile. However, while this mutation eliminated the specificity of the Src SH2 domain for the pYEEI peptide sequence, it was not sufficient to switch the specificity of the Src SH2 domain to that of a related SH2 domain which has an Ile at the betaD5 position. Mutation of Lys betaD3 to an Ala residue resulted in a modest reduction in binding affinity (sevenfold). It is interesting that this mutation resulted in a change of specificity affecting the selection of the +1 position residue C-terminal to the phosphotyrosine. Except for the Lys betaD3-+1 Glu interaction which is significantly coupled, only weak energetic coupling was observed across the binding interface, as assessed using double mutant cycles. The results of this study suggest that interactions involving the specificity determining region of SH2 domains may be insufficient by themselves to target single SH2 domains to particular phosphorylated sites.  相似文献   

13.
We have isolated a human cDNA for the signaling adapter molecule FRS-2/suc1-associated neurotrophic factor target and shown that it is tyrosine-phosphorylated in response to nerve growth factor (NGF) stimulation. Importantly, we demonstrate that the phosphotyrosine binding domain of FRS-2 directly binds the Trk receptors at the same phosphotyrosine residue that binds the signaling adapter Shc, suggesting a model in which competitive binding between FRS-2 and Shc regulates differentiation versus proliferation. Consistent with this model, FRS-2 binds Grb-2, Crk, the SH2 domain containing tyrosine phosphatase SH-PTP-2, the cyclin-dependent kinase substrate p13(suc1), and the Src homology 3 (SH3) domain of Src, providing a functional link between TrkA, cell cycle, and multiple NGF signaling effectors. Importantly, overexpression of FRS-2 in cells expressing an NGF nonresponsive TrkA receptor mutant reconstitutes the ability of NGF to stop cell cycle progression and to stimulate neuronal differentiation.  相似文献   

14.
Crk-associated substrate (CAS) is a tyrosine kinase substrate implicated in integrin control of cell behavior. Phosphorylation, by Src family kinases, of multiple tyrosine residues in the CAS substrate domain (SD) is a major integrin signaling event that promotes cell motility. In this study, novel phosphospecific antibodies directed against CAS SD phosphotyrosine sites ("pCAS" antibodies) were characterized and employed to investigate the cellular regulation and localization of CAS SD tyrosine phosphorylation. An analysis of CAS and focal adhesion kinase (FAK) variants expressed in CAS- and FAK-deficient cell lines, respectively, indicated that CAS SD tyrosine phosphorylation is substantially achieved by Src family kinases brought into association with CAS through two distinct mechanisms: direct binding to the CAS Src-binding domain and indirect association through a FAK bridge. Cell immunostaining with pCAS antibodies revealed that CAS SD tyrosine phosphorylation occurs exclusively at sites of integrin adhesion including both nascent focal complexes formed at the edges of extending lamellipodia as well as mature focal adhesions underlying the cell body. These findings further document a role for FAK as an important upstream regulator of CAS SD tyrosine phosphorylation and implicate CAS-mediated signaling events in promoting membrane protrusion/lamellipodium extension during cell motility.  相似文献   

15.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

16.
The B cell-restricted transmembrane glycoprotein CD22 is rapidly phosphorylated on tyrosine in response to cross-linking of the B cell antigen receptor, thereby generating phosphotyrosine motifs in the cytoplasmic domain which recruit intracellular effector proteins that contain Src homology 2 domains. By virtue of its interaction with these effector proteins CD22 modulates signal transduction through the B cell antigen receptor. To define further the molecular mechanism by which CD22 mediates its co-receptor function, phosphopeptide mapping experiments were conducted to determine which of the six tyrosine residues in the cytoplasmic domain are involved in recruitment of the stimulatory effector proteins phospholipase Cgamma (PLCgamma), phosphoinositide 3-kinase (PI3K), Grb2, and Syk. The results obtained indicate that the protein tyrosine kinase Syk interacts with multiple CD22-derived phosphopeptides in both immunoprecipitation and reverse Far Western assays. In contrast, the Grb2.Sos complex was observed to bind exclusively to the fourth phosphotyrosine motif (Y828ENV) from CD22 and does so via a direct interaction based on Far Western and reverse Far Western blotting. Although both PLCgamma and PI3K were observed to bind to multiple phosphopeptides in precipitation experiments, subsequent studies using reverse Far Western blot analysis demonstrated that only the carboxyl-terminal phosphopeptide of CD22 (Y863VTL) binds directly to either one. This finding suggests that PLCgamma and PI3K may be recruited to CD22 either through a direct interaction with Tyr863 or indirectly through an association with one or more intermediate proteins.  相似文献   

17.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its carboxy-terminal tail. A kinase that phosphorylates Tyr527, called Csk, has recently been identified. We expressed c-Src in yeast to test the role of the SH2 and SH3 domains of Src in the negative regulation exerted by Tyr527 phosphorylation. Inducible expression of c-Src in Schizosaccharomyces pombe caused cell death. Co-expression of Csk counteracted this effect. Src proteins mutated in either the SH2 or SH3 domain were as lethal as wild type c-Src, but were insensitive to Csk, even though they were substrates for Csk in vivo. Peptide binding experiments revealed that Src proteins with mutant SH3 domains adopted a conformation in which the SH2 domain was not interacting with the tail. These data support the model of an SH2 domain-phosphorylated tail interaction repressing c-Src activity, but expand it to include a role for the SH3 domain. We propose that the SH3 domain contributes to the maintenance of the folded, inactive configuration of the Src molecule by stabilizing the SH2 domain-phosphorylated tail interaction. Moreover, the system we describe here allows for further study of the regulation of tyrosine kinases in a neutral background and in an organism amenable to genetic analysis.  相似文献   

18.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

19.
Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.  相似文献   

20.
Src protein-tyrosine kinase contains a myristoylation motif, a unique region, an Src homology (SH) 3 domain, an SH2 domain, a catalytic domain, and a C-terminal tail. The C-terminal tail contains a Tyr residue, Tyr527. Phosphorylation of Tyr527 triggers Src inactivation, caused by Tyr(P)527 binding to the SH2 domain. In this study, we demonstrated that a conformational contribution, not affinity, is the predominant force for the intramolecular SH2-Tyr(P)527 binding, and we characterized the structural basis for this conformational contribution. First, a phosphopeptide mimicking the C-terminal tail is an 80-fold weaker ligand than the optimal phosphopeptide, pYEEI, and similar to a phosphopeptide containing three Ala residues following Tyr(P) in binding to the Src SH2 domain. Second, the SH2-Tyr(P)527 binding is largely independent of the amino acid sequence surrounding Tyr(P)527, and only slightly decreased by an inactivating mutation in the SH2 domain. Furthermore, even the unphosphorylated C-terminal tail with the sequence of YEEI suppresses Src activity by binding to the SH2 domain. These experiments demonstrate that very weak affinity is sufficient for the SH2-Tyr(P)527 binding in Src inactivation. Third, the effective intramolecular SH2-Tyr(P)527 binding is attributed to a conformational contribution that requires residues Trp260 and Leu255. Although the SH3 domain is essential for Src inactivation by Tyr(P)527, it does not contribute to the SH2-Tyr(P)527 binding. These findings suggest a conformation-based Src inactivation model, which provides a unifying framework for understanding Src activation by a variety of mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号