首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal degradation of pine and straw alkali lignins   总被引:2,自引:0,他引:2  
Summary Kraft pine and straw lignins were fractionated into aqueous soluble and organic soluble-ether insoluble parts. Chemical analysis, UV characteristics, and gel permeation chromatograms of crude and fractionated lignins were studied. Using pure and mixed, N-limited and non N-limited standing cultures of several fungal species, the biodegradability of curde and fractionated lignins was compared. Straw lignins, especially the aqueous fraction were degraded by most of the fungi studied. Except for Sporotrichum pulverulentum, nitrogen limitation did not seem to favour degradation. The best fungi for degradation under conditions of N-limitation were S. pulverulentum, Humicola fuscoatra, and Aspergillus wentii, under sufficient nitrogen: A. wentii, Chaetomium cellulolyticum and H. fuscoatra. The greatest percentage degradation, 55%, was obtained with S. pulverulentum under nitrogen limited conditions from 1 gl–1 organic soluble-ether insoluble kraft lignin. Gel chromatography showed that the degradation was over the complete molecular size range.  相似文献   

2.
Independent down-regulation of genes encoding p-coumarate 3-hydroxylase (C3H) and hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) has been previously shown to reduce the recalcitrance of alfalfa and thereby improve the release of fermentable sugars during enzymatic hydrolysis. In this study, ball-milled lignins were isolated from wild-type control, C3H, and HCT gene down-regulated alfalfa plants. One- and two-dimensional nuclear magnetic resonance (NMR) techniques were utilized to determine structural changes in the ball-milled alfalfa lignins resulting from this genetic engineering. After C3H and HCT gene down-regulation, significant structural changes had occurred to the alfalfa ball-milled lignins compared to the wild-type control. A substantial increase in p-hydroxyphenyl units was observed in the transgenic alfalfa ball-milled lignins as well as a concomitant decrease in guaiacyl and syringyl units. Two-dimensional 13C–1H heteronuclear single quantum coherence correlation NMR, one-dimensional distortionless enhancement by polarization transfer-135, and 13C NMR measurement showed a noteworthy decrease in methoxyl group and β-O-4 linkage contents in these transgenic alfalfa lignins. 13C NMR analysis estimated that C3H gene down-regulation reduced the methoxyl content by ~55–58% in the ball-milled lignin, while HCT down-regulation decreased methoxyl content by ~73%. The gene down-regulated C3H and HCT transgenic alfalfa lignin was largely a p-hydroxyphenyl (H) rich type lignin. Compared to the wild-type plant, the C3H and HCT transgenic lines had an increase in relative abundance of phenylcoumaran and resinol in the ball-milled lignins.  相似文献   

3.
The enzymatic hydrolysis of cellulose into glucose, referred to as saccharification, is severely hampered by lignins. Here, we analyzed transgenic poplars (Populus tremula × Populus alba) expressing the Brachypodium (Brachypodium distachyon) p-coumaroyl-Coenzyme A monolignol transferase 1 (BdPMT1) gene driven by the Arabidopsis (Arabidopsis thaliana) Cinnamate 4-Hydroxylase (AtC4H) promoter in the wild-type (WT) line and in a line overexpressing the Arabidopsis Ferulate 5-Hydroxylase (AtF5H). BdPMT1 encodes a transferase which catalyzes the acylation of monolignols by p-coumaric acid (pCA). Several BdPMT1-OE/WT and BdPMT1-OE/AtF5H-OE lines were grown in the greenhouse, and BdPMT1 expression in xylem was confirmed by RT-PCR. Analyses of poplar stem cell walls (CWs) and of the corresponding purified dioxan lignins (DLs) revealed that BdPMT1-OE lignins were as p-coumaroylated as lignins from C3 grass straws. For some transformants, pCA levels reached 11 mg·g−1 CW and 66 mg·g−1 DL, exceeding levels in Brachypodium or wheat (Triticum aestivum) samples. This unprecedentedly high lignin p-coumaroylation affected neither poplar growth nor stem lignin content. Interestingly, p-coumaroylation of poplar lignins was not favored in BdPMT1-OE/AtF5H-OE transgenic lines despite their high frequency of syringyl units. However, lignins of all BdPMT1-OE lines were structurally modified, with an increase of terminal unit with free phenolic groups. Relative to controls, this increase argues for a reduced polymerization degree of BdPMT1-OE lignins and makes them more soluble in cold NaOH solution. The p-coumaroylation of poplar samples improved the saccharification yield of alkali-pretreated CW, demonstrating that the genetically driven p-coumaroylation of lignins is a promising strategy to make wood lignins more susceptible to alkaline treatments used during the industrial processing of lignocellulosics.

The expression of a grass p-coumaroyl-CoA:monolignol transferase induces high p-coumaroylation of poplar lignins and better saccharification of alkali-pretreated poplar wood without growth penalty.  相似文献   

4.
After 6 months of incubation in a fertile neutral sandy loam, about 48% of the ring carbons and 2-carbons and 60% of the OCH3 carbons of specifically labeled coniferyl alcohol had evolved as CO2. After 1 year, corresponding values were 55 and 65%. When coniferyl alcohol units were linked into model and cornstalk lignins, about 23% of the ring carbons and 2-carbons and 39% of the OCH3 carbons had evolved as CO2 after 6 months. After 1 year, corresponding values were about 28 and 46%. The addition of orange leaves (0.5%, wt/wt) after 6 months did not significantly increase the evolution of 14CO2. Addition of orange leaves (0.5%, wt/wt) with specifically 14C-labeled pyrocatechol, coumaryl alcohol, model lignins, humic acid-type phenolic polymers and of uniformly 14C-labeled fungal melanins did not increase labeled C losses or C losses from the orange leaves. Decomposition of protein and pyrocatechol linked into model humic acid polymers, coniferyl alcohol C in model lignins, and Eurotium echinulatum melanin in six soils varied from 2 to 14%. Significant differences in C losses were related to soils and were not influenced by orange leaf applications.  相似文献   

5.
Kraft lignins (KL), bleached kraft lignins (BKL), and lignin sulfonates (LS) were prepared from synthetic 14C-lignins labeled in the aromatic nuclei or in the propyl side chains. These and control lignins (CL) were incubated with the lignin-decomposing white-rot fungus, Phanerochaete chrysosporium Burds., in a defined culture medium containing cellulose as growth substrate. Decomposition was monitored by measuring the 14CO2 evolved. Average percentages of the [ring-14C]- and [side chain-14C]-lignins, respectively, recovered as 14CO2 at the cessation of 14CO2 evolution were: KL, 41 and 31; BKL, 42 and 26; LS, 28 and 21; and CL, 26 and 24. Gel permeation chromatography of radiolabeled materials extracted from spent cultures showed that substantial degradation to nonvolatile products had occurred. The polymeric components in the extracts were further degraded in fresh cultures. These results indicate that industrial lignins are significantly bioalterable, and that under favorable conditions industrial lignins are substantially biodegradable.  相似文献   

6.
Phanerochaete chrysosporium degraded purified Kraft lignin, alkali-extracted and dioxane-extracted straw lignin, and lignosulfonates at a similar rate, producing small-molecular-weight (~1,000) soluble products which comprised 25 to 35% of the original lignins. At concentrations of 1 g of lignin liter−1, 90 to 100% of the acid-insoluble Kraft, alkali straw, and dioxane straw lignins were degraded by 1 g of fungal mycelium liter−1 within an active ligninolytic period of 2 to 3 days. Cultures with biomass concentrations as low as 0.16 g liter−1 could also completely degrade 1 g of lignin liter−1 during an active period of 6 to 8 days. The absorbance at 280 nm of 2 g of lignosulfonate liter−1 increased during the first 3 days of incubation and decreased to 35% of the original value during the next 7 days. The capacity of 1 g of cells to degrade alkali-extracted straw lignin under optimized conditions was estimated to be as high as 1.0 g day−1. This degradation occurred with a simultaneous glucose consumption rate of 1.0 g day−1. When glucose or cellular energy resources were depleted, lignin degradation ceased. The ability of P. chrysosporium to degrade the various lignins in a similar manner and at very low biomass concentrations indicates that the enzymes responsible for lignin degradation are nonspecific.  相似文献   

7.
The purpose of this study was to examine the relationship between the molecular size of lignin in several preparations and extent of degradation (mineralization) by Xanthomonas sp. strain 99. The influence of ligninase pretreatment was also examined. Five synthetic lignins and one 14C-methylated spruce lignin were used. The extent of mineralization to 14CO2 was greatest for the samples containing the most low-molecular-weight material, and the low-molecular-weight portions were preferentially (or perhaps solely) degraded. Pretreatment of the five synthetic lignins with crude ligninase increased their molecular size and decreased their degradability by the xanthomonad. Pretreatment of the methylated spruce lignin with crude ligninase caused both polymerization and depolymerization but resulted in a net decrease in bacterial degradability. Our results suggest that the xanthomonad can degrade lignins only up to a molecular weight of 600 to 1,000.  相似文献   

8.
Soda lignin, dioxane lignin and milled lignin were isolated from Alfa grass (Stipatenacissima L.). The physico-chemical characterization of three different lignins: one industrial lignin precipitated from soda spent liquor and two lignin preparations isolated under laboratory conditions from Alfa grass (also know as Esparto grass) was performed. The structures of lignins were studied by three non-destructive (FT-IR, solid state 13C NMR and UV/visible spectroscopy) and two destructive (nitrobenzene oxidation and thermogravimetric analysis) methods. Elemental analysis and the methoxyl content determination were performed in order to determine the C9 formulae for the studied lignins. The total antioxidant capacity of the studied lignins has been determined and compared to commercial antioxidants commonly used in thermoplastic industry.  相似文献   

9.
SoftwoodPinus radiata was degraded by the ascomyceteChrysonilia sitophila during 3 months. The total weight loss of the wood was 20% and the carbohydrate and lignin losses were 18% and 25%, respectively. Decayed wood was extracted with solvents of increasing polarity. Methanol and dioxane yielded extracts containing representative low molecular weight degraded lignins. The overall structure of the degraded lignins, as shown by U.V./visible, I.R.,1H and13C NMR spectroscopy, GPC, functional group and elemental analyses, was compared with the structure of milled wood lignin extracted from undecayedP. radiata. The compilation of the data allows us to suggest oxidative C-C and -O-aryl cleavages for the mechanism of lignin degradation by this ascomycete. New saturated carbons on the side chain of the degraded lignins were detected. Based on these data a reductive ability of this microorganism was also suggested.  相似文献   

10.
Summary Serratia marcescens was found to degrade kraft lignin by only 15%. When 14C-radiolabelled lignocelluloses and DHP lignins were used as substrates the bacterium mineralized to 14CO2 only 1.1–1.9% and 0.4–0.8% of the lignins respectively. However, some 44.4% of the 14C--DHP lignin was recovered as soluble radiolabelled products.  相似文献   

11.
Douglas-fir was SO2-steam pretreated at different severities (190, 200, and 210 °C) to assess the possible negative effect of the residual and isolated lignins on the enzymatic hydrolysis of the steam pretreated substrates. When various isolated lignins were added to the Avicel hydrolysis reactions, the decrease in glucose yields ranged from 15.2% to 29.0% after 72 h. It was apparent that the better hydrolysis yields obtained at higher pretreatment severities were more a result of the greater accessibly of the cellulose rather than any specific change in the non-productive binding of the lignin to the enzymes. FTIR and 13C NMR characterization indicated that the lignin in the steam pretreated substrates became more condensed with increasing severity, suggesting that the cellulases were adsorbed to the lignin by hydrophobic interactions. Electrostatic interactions were also involved as the positively charged cellulase components were preferentially adsorbed to the lignins.  相似文献   

12.
Magnetic particles of size 10 nm have been coated with silica to a mean diameter of 40 nm and charged with Cu2+ ions via a multidentate ligand, iminodiacetic acid (IDA), for the immobilization of His-tagged Bacillus stearothermopilus L1 lipase. Microporous (average pore diameter of 60 Å) silica gel with a mean particle diameter of 115 µm has been used as a comparative support material. The molar ratio of Cu2+ to IDA was found to be 1:1.14 and 1:1.99 in the silica gel and the silica-coated magnetic nanoparticles (SiMNs), respectively. The specific activity of the immobilized enzyme was found to conform to the following order: Cu2+-charged SiMN>SiMN>Cu2+-charged silica gel>silica gel. When it was immobilized on the Cu2+-charged SiMNs, over 70% of the initial activity of the lipase remained after it had been reused five times. However, only 20% of the initial activity remained after the enzyme immobilized on the Cu2+-charged silica gel had been reused five times. For the enzyme immobilized on supports without Cu2+ cations, all activity was lost after threefold reuse. The differences in the specific activities and the efficiencies of reuse of the enzymes immobilized on the various support materials are discussed in terms of immobilization mechanisms (physical adsorption vs. coordination bonding), mass transfer of a substrate and a product of the enzyme reaction, and the status of the Cu (Cu bound to the IDA on the silica layer vs. Cu directly adsorbed on the silica layer).  相似文献   

13.
Pseudomonas putida, isolated from decomposing plant materials, degraded several lignin-related aromatic compounds. After 30 days of incubation in media containing polymeric Kraft-lignin (PKL), the amount of Klason lignin had decreased by about 13%. When 14C-labelled dehydropolymers of coniferyl alcohol (DHP) lignins and 14C-lignin-lignocelluloses were used as substrates, mineralization to 14CO2 by the P. putida strain ranged from 1.4% to 2.1%.  相似文献   

14.
Moon SJ  Eom IY  Kim JY  Kim TS  Lee SM  Choi IG  Choi JW 《Bioresource technology》2011,102(10):5912-5916
Poplar wood flour (Populous albaglandulosa) was treated with sub- and super-critical water (subcritical: 325, 350 °C; super-critical: 380, 400, 425 °C) for 60 s at 220 ± 10 atm. Hydrochloric acid (0.05% v/v) was added to samples as acidic catalyst. The final products were separated into water soluble fraction and undegraded solids. The yields of undegraded solids were thoroughly dependent on temperature severity and mainly composed of lignin fragments. Average molecular weights of the lignins were between 1500 and 4400 Da, which was only 1/3-1/8-fold of poplar milled wood lignin (13,250 Da). DFRC (Derivatization Followed by Reductive Cleavage) analysis revealed that C6C3 phenols (coniferyl and sinapyl alcohol) were rarely detected in the lignins, indicating occurrence of two probable lignin reactions during SCW hydrolysis: lignin fragmentation via splitting of β-O-4 linkage and loss of propane side chains. These results were also confirmed by 1H and 13C NMR spectroscopic analysis.  相似文献   

15.
Escherichia intermedia cells were immobilized by entrapment in a carrageenan gel and used for -DOPA synthesis from catechol, pyruvate, and ammonia. A preparation containing 75 mg of cell per gram of gel retained 60–65% of its original activity. The effect of substrate concentrations on the initial rate of -DOPA synthesis was very similar for free and immobilized cells, and substrate inhibition was observed for the three substrates. In batch reactors, up to 7.8 g l−1 of -DOPA was obtained in 20 h (productivity 0.39 g l−1 h−1). Cells immobilized in a carrageenan gel showed higher -DOPA synthesis, in both initial rates conditions and batch reactors, than cells immobilized in a polyacrylamide gel.  相似文献   

16.
PurposeIn previous studies, methylthymol-blue and benzoic acid have been introduced as a diffuser limiter and sensitivity enhancer in the gel dosimeter composition, respectively. This work focused on analyzing a formulation of the Fricke gel dosimeter consisting of methylthymol-blue and benzoic acid through magnetic resonance imaging.MethodsThe gel dosimeter samples were irradiated using 6, 10, and 15 MV photons with different levels of doses and read using a 1.5 T scanner in order to evaluate the dose–response sensitivity and to study the effect of benzoic acid concentration, diffusion coefficient and temperature and to determine the temporal stability of the gel dosimeter.ResultsInspection of radiological properties revealed that this gel dosimeter can be considered as a tissue equivalent medium. Within the dose range 0 to 1000 cGy, the R1 sensitivity and R2 sensitivity of the gel dosimeter equaled 0.058 ± 0.003 and 0.092 ± 0.004 s−1Gy−1, respectively. The diffusion coefficient was less than 0.85 ± 0.02mm2h−1 for doses higher than 200 cGy. In addition, by changing the temperature from 15C to 25, the R1 sensitivity and R2 sensitivity decreased about 5 and 11%, respectively. Further, no significant energy and dose rate dependence were observed over photon energies of 6, 10, and 15 MV and over the range 65 to 525 cGy min−1.ConclusionsBased on our observation, the ferrous benzoic acid methylthymol-blue gel dosimeter can be suggested to measure the dose distribution. Further analysis is required to clarify its performance in clinical situations.  相似文献   

17.
Summary Acinetobacter sp. utilized the [ring-14C]dehydropolymer of coniferyl alcohol (DHP) (sp. act. 1.4 × 104 dpm/mg), 14C-labelled teakwood lignin (sp. act. 2.5 × 104 dpm/mg), guaiacolglyceryl ether, 2-methoxy-4-formylphenoxyacetic acid, p-benzyloxyphenol, dehydrodivanillyl alcohol, dehydrodiisoeugenol, veratrylglycerol--guaiacyl ether, conidendrin, black liquor lignin and indulin as sole carbon sources. The bacterium produced p-coumaric acid, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid and catechol as intermediates from lignins. Acinetobacter sp. produced catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase during the degradation of lignins. Correspondence to: A. Mahadevan  相似文献   

18.
Carbon-13 nuclear magnetic resonance spectra of lignins   总被引:4,自引:0,他引:4  
From the 13C-nmr spectra of a large number of dimeric and monomeric lignin model compounds the chemical shifts of the carbon atoms of the C9-units in lignin with different substitution patterns were determined. The absorption peaks of the carbon-13 spectra of two lignins (beech and spruce) could be assigned by comparison (Table 3).  相似文献   

19.
A coupled enzyme assay for GlcNAc1: UDP-galactose galactosyltransferase has been developed that allows this enzyme to be assayed spectrophotometrically and in nondenaturing polyacrylamide gels. Utilizing three, intermediate enzymes, galactosyltransferase activity has been coupled to the production of NADH with a stoichiometry of 2 mol of NADH produced for each mol of galactose transferred to GlcNAc. The enzyme reactions coupled to the production of UDP by galactosyltransferase can be summarized as follows:
The activities of partly purified bovine milk galactosyltransferase and galactosyltransferase in dialyzed fetal calf serum have been determined spectrophotometrically by measuring NADH production at 340 nm. The reaction is dependent on N-acetylglucosamine, UDP-galactose, and Mn2+. For both enzyme sources, activities calculated from NADH production are similar to those determined from assays that use radioactive sugar nucleotide substrates. Both galactosyltransferase activities have been localized on 7.5% nondenaturing polyacrylamide gels after electrophoresis by incubating the gel with an agarose indicator gel containing the coupled enzyme system. Enzyme activity is marked by NADH fluorescence, which is dependent on the presence of N-acetylglucosamine in the indicator gel. The intensity of fluorescence increases with increasing galactosyltransferase activity applied to the gel.  相似文献   

20.
1. Artificial lignins have been produced on potato parenchyma. 2. The methoxyl-free lignin and 4-hydroxy-3-methoxy (guaiacyl) lignins could be estimated by the sulphuric acid method but the 4-hydroxy-3,5-dimethoxy (syringyl) lignins could not. 3. Permanganate oxidation of isolated p-coumaric lignin gave 4-hydroxybenzoic acid, 4-hydroxyisophthalic acid and small amounts of hydroxytrimesic acid and 4-hydroxyphthalic acid. Ferulic lignin gave vanillic acid and 5-carboxyvanillic acid and also small amounts of 4-hydroxybenzoic acid and dehydrodivanillic acid. The sinapic lignin gave traces of syringic acid and of 4-hydroxybenzoic acid. 4. The p-coumaric lignin is a highly condensed polymer. The ferulic lignin is partly uncondensed and partly condensed through the 5-position like gymnosperm lignin. The sinapic lignin shows no evidence of condensation and is probably an ether-linked polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号