首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Fertilized eggs of Ilyanassa obsoleta form a protuberance which resembles a normal polar lobe when injected with Sr2+ or Ca2+ by microiontophoresis. Eggs also form a lobe-like protuberance when exposed to any of three drugs: compound 4880, ionophore X537A, and ionophore A23187. Protuberances form more quickly and at lower drug concentrations if additional exogenous Ca2+ is added, whereas higher concentrations of Mg2+ do not have such an effect. When eggs are exposed to these drugs in Ca2+-, Mg2+-“free” seawater, with or without 10 mM EDTA, the eggs are still able to undergo extensive shape changes and form protuberances. Drug-induced shape changes are prevented by cytochalasin B, but will still occur in the presence of colchicine. Approximately 75% of Ilyanassa eggs are capable of forming and resorbing their third polar lobe and undergoing cytokinesis in Ca2+-, Mg2+-“free” artificial seawater (even containing 10 mM EDTA), solutions which by atomic absorption spectroscopy are shown to contain low concentrations of Ca2+ (3–5 μM) and Mg2+ (1.0–3.5 μM). The data suggest that if Ca2+ is required for normal polar lobe formation and cytokinesis, it is derived from intracellular sources or is required in only very low exogenous concentrations (i.e., less than 10?2 μM free Ca2+, in the presence of 10 mM EDTA).  相似文献   

2.
Results of numerous experiments indicate that the transient rise in intracellular Ca2+following sperm–egg fusion is essential for the subsequent events that constitute egg activation. Some events of egg activation, e.g., cortical granule exocytosis, however, appear more sensitive to intracellular Ca2+than other events, e.g., cell cycle resumption. To examine if specific events of egg activation have different thresholds for Ca2+, we manipulated buffered intracellular Ca2+concentrations by microinjecting Ca2+-BAPTA buffers and then examined the effect on the cortical granule exocytosis, recruitment of maternal mRNAs, and cell cycle resumption. We find that whereas cortical granule exocytosis occurs over a narrow threshold range of injected free Ca2+concentrations between 0.5 and 1.0 μM,recruitment of maternal mRNAs is only partially stimulated at injected free Ca2+concentrations of 2.5 μM,and no evidence for cell cycle resumption was observed (up to 2.5 μMCa2+). Although the Ca2+- and phospholipid-dependent protein kinase, protein kinase C, is implicated in aspects of egg activation, calmodulin is also a potential target for the transient increase in Ca2+that occurs following fertilization. Whereas incubation of eggs in the presence of the calmodulin antagonist W-7 followed by insemination does not block cortical granule exocytosis, cell cycle resumption, as assessed by the metaphase-to-anaphase transition, a decrease in histone H1 kinase activity and the time course for the emission of the second polar body are significantly delayed/inhibited.  相似文献   

3.
An ATP-dependent mechanism for Ca2+ uptake in human platelet membrane fractions has been identified and characterized. Ca2+ uptake into a membrane fraction is shown to be stimulated at low concentrations of ATP and Ca2+ and to require magnesium ions. Initial rate kinetics, using Eadie-Scatchard analysis, indicated a single class of calcium uptake sites in the presence of ATP, with a Kd for free [Ca2+] of 0.145 μM. Ca2+ uptake in the presence of several ATP concentrations demonstrates that ATP binds to at least two sites, representing high and low affinities of 3.21 and 80.1 μM, respectively. The neuroleptic drug fluphenazine inhibited ATP-stimulated calcium uptake (IC50 = 55 μM), suggesting this ATP-dependent Ca2+ uptake system may provide a useful ion-transport model with which to study neuroleptic therapy in humans.  相似文献   

4.
Parthenogenetic activation of Lytechinus pictus eggs can be monitored after injection with the Ca-sensitive photoprotein aequorin to estimate calcium release during activation. Parthenogenetic treatments, including the nonelectrolyte urea, hypertonic sea water, and ionophore A23187, all acted to release Ca2+ from intracellular stores. Ionophore and urea solutions release Ca2+ from the same intracellular store as normal fertilization. This intracellular store can be reloaded after 40 min and discharged again. Hypertonic medium appears to release Ca2+ from a different intracellular store. Treatment with the weak base NH4Cl did not release intracellular Ca2+ but did result in a momentary Ca2+ influx if Ca2+ was present in the external solution. Ca2+ influx was not required for ammonia activation.  相似文献   

5.
The membrane potential of the frog egg undergoes a transient positive shift at fertilization which is a block to polyspermy. This paper addresses the question of how a sperm elicits this “fertilization potential.” Iontophoretic injection of Ca2+ activates Rana pipiens eggs to develop and initiates a transient, positive-going shift in the membrane potential (the activation potential) which is like the sperm-induced fertilization potential in amplitude, duration, and Cl? dependence. Activation potentials are elicited by Ca2 injection into both animal and vegetal regions of the egg, but the rate of the initial depolarization is much less when Ca2+ is injected into the vegetal region. Injections of K+, Na+, Cl?, or Mg2+ do not result in activation potentials, but the Ca2+ analogs, Sr2+ and Ba2+, can substitute for Ca2+. Treatment of eggs with the divalent cation ionophore, A23187, also initiates a transient, positive-going depolarization. Because injection of Ca2+ is sufficient to elicit a response almost identical to a fertilization potential, the ion transport mechanisms necessary to produce a fertilization potential must preexist in the unfertilized eggs; the sperm contributes only the stimulus to activate these mechanisms. The results reported here suggest that the stimulus may be a rise in free Ca2+.  相似文献   

6.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium (K121 = 0.12 μM) and the second had a comparatively low affinity (K212 = 49.5 μM). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 μM). Calmodulin (12.5 μ/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 μM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis.  相似文献   

7.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

8.
Plasma membrane vesicles, isolated from ejaculated ram sperm, were found to contain Ca2+-activated Mg2+-ATPase and Ca2+ transport activities. Membrane vesicles that were exposed to oxalate as a Ca2+-trapping agent accumulated Ca2+ in the presence of Mg2+ and ATP. The Vmax for Ca2+ uptake was 33 nmol/mg protein per h, and the Km values for Ca2+ and ATP were 2.5 μM and 45 μM, respectively. 1 μM of the Ca2+ ionophore A23187, added initially, completely inhibited net Ca2+ uptake and, if added later, caused the release of Ca2+ previously accumulated. A Ca2+-activated ATPase was present in the same membrane vesicles which had a Vmax of 1.5 μmol/mg protein per h at free Ca2+ concentration of 10 μM. This Ca2+-ATPase had Km values of 4.5 μM and 110 μM for Ca2+ and ATP, respectively. This kinetic parameter was similar to that observed for uptake of Ca2+ by the vesicles. The Ca2+-ATPase activity was insensitive to ouabain. Both Ca2+ transport and Ca2+-ATPase activity were inhibited by the flavonoid quercetin. Thus, ram spermatozoa plasma membranes have both a Ca2+ transport activity and a Ca2+-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivity to quercetin.  相似文献   

9.
Uptake of Ca2+ by sarcoplasmic reticulum in the presence of oxalate displays biphasic kinetics. An initial phase of normal uptake is followed by a second phase coincident with precipitation of calcium oxalate inside the vesicles. The precipitation rate induced by actively transported Ca2+ is depressed by increasing the added Ca2+ concentration. This correlates linearly with the reciprocal of precipitation rate. Therefore, a maximal limit rate could be extrapolated at zero Ca2+ (V0). The rate of precipitation, also a function of added amount protein, gives a linear correlation in a double reciprocal plot. Thus, it was possible to estimate the maximal precipitation rate occurring at infinite protein concentration (V). With the combined extrapolated values a maximal expected precipitation rate could be calculated (V0). Kinetics of calcium oxalate precipitation was studied in the absence of calcium uptake and empirical equations relating the rate of precipitation with the added Ca2+ were established. Entering V0 in the equations, an internal free Ca2+ concentration of approx. 2.5 mM was estimated. Additionally, it is shown that the ionophore X-537A does not supress the Ca2+ uptake, if added during the oxalate-dependent phase, albeit the uptake proceeds at a slower rate after the release of approx. 70 nmol Ca2+/mg protein. This amount presumably equals the internal free Ca2+ not sequestered by oxalate, producing a maximal concentration approx. 14 mM. Taking into account low affinity binding of internal binding sites and the transmembrane Ca2+ gradients built up during the uptake of Ca2+, values of free Ca2+ ranging from 3 to 6 mM, approaching those estimated by the precipitation analysis, could be estimated.  相似文献   

10.
Anti-tubulin immunofluorescence microscopy is used here to demonstrate that eggs of Lytechinus variegatus are induced to assemble cytoplasmic microtubules upon artificial activation. These microtubules progress through three distinct configurations followed by cycles of abortive division. The first of these is a configuration in which microtubules are found in a disordered network near the egg cortex; the progressive thickening of the microtubule-containing layer appears to be responsible for the centripetal movement of the egg nucleus that occurs shortly after activation. These microtubules are replaced at about 40 min by a population of long, radially arrayed microtubules, which are restructured by about 70 min to form the apolar mitotic apparatus. Each of the microtubule configurations characteristic of activated eggs becomes more prominent when eggs are treated at the appropriate times after activation with the microtubule-stabilizing drug taxol. Any microtubule organizing centers within the activated egg must have very limited authority, since aster-like structures are not seen, and microtubules are not observed to be closely associated with the nucleus or egg cortex. Activation of eggs with ammonia in Ca2+-free sea water (a treatment that bypasses the cortical reaction and the Ca2+ transient) induces the appearance of microtubules as readily and in the same patterns as does treatment with ionophore A23187 or butyric acid, both of which activate by inducing an intracellular calcium release and the cortical reaction.  相似文献   

11.
Summary Primary cultures of embryonic chick pectoral skeletal muscle were used to study calcium regulation of myoblast fusion to form multinucleated myotubes. Using atomic absorption spectrometry to measure total cellular calcium and the45Ca-exchange method to determine free cellular Ca++, our data suggest that only the free cellular calcium changes significantly during development under conditions permissive for myotube formation (0.9 mM external Ca++). Increases in calcium uptake occurred before and toward the end of the period of fusion with the amount approximating 2 to 4 pmol per cell in mass cultures. If the medium [Ca++] is decreased to 0.04 mM, as determined with a calcium electrode, a fusion-block is produced and free cell Ca++ decreased 5- to 10-fold. Removal of the fusion-block by increasing medium [Ca++] results in a release of the fusion-block and an increase in cellular Ca++ to approximately 1 pmol per cell during fusion, and higher thereafter. Cation ionophore A23187 produced transient increases in cellular calcium and stimulated myoblast fusion and the final extent of myotube formation only when added at the onset of culture. Results suggest that transient increased calcium uptake alone is insufficient for fusion because critical cellular content in conjunction with permissive amounts of medium [Ca++] must exist. The latter suggests further that cell surface Ca++ was also critical.  相似文献   

12.
Both isotopic and microelectrode studies reveal a significant Ca2+ influx at fertilization which if freely distributed in the cytoplasm would equal 1–2 × 10−5 M. The role, if any, of this influx is disputed. We have attempted to reevaluate contradictory findings by others on this role. Our results with Strongylocentrotus purpuratus and Lytechinus pictus eggs, assessing fertilization with acrosome-reacted sperm in EGTA-buffered media (free [Ca2+], 4.4 × 10−8 M) indicate that exogenous Ca2+ is not required for fertilization and subsequent cleavage. The contradictory findings by others may have resulted from reduced fertilizability in Ca2+-free seawater, which can be circumvented by higher sperm concentration and by a sensitivity to temperature in Ca2+-free medium, which can be bypassed by carrying out fertilization at lower temperature. Also consistent with the absence of a requirement for this Ca2+ influx, we found that Ca2+ uptake can be induced in eggs by depolarizing the membrane with high [K+], but there is no resultant activation of egg metabolism. Under our conditions for fertilization in Ca2+-free media, there is no effect on the block to polyspermy but the initiation of the cortical reaction may be delayed. The data support the hypothesis that sperm induce release of Ca2+ from intracellular stores, perhaps by affecting an equilibrium between Ca2+ sequestration and Ca2+ release.  相似文献   

13.
We examined the role of Ca2+, both extracellular and intracellular in origin, in the release reaction and protein phosphorylation in rabbit platelets stimulated with platelet activating factor (acetylglyceryl ether phosphorylcholine), thrombin, or ionophore A23187. In the presence of extracellular Ca2+, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a putative antagonist of intracellular Ca2+ transport, blocked platelet activating factor-initiated serotonin release at a half-maximal inhibitor concentration of 40 μM, compared to 350 μM for thrombin-induced release and greater than 500 μM, for A23187-induced release. Platelet activating factor-induced phosphorylation of two platelet proteins of Mr=41 000 (P7P) and 20 000 (P9P) was inhibited by TMB-8, an effect which was additive to that caused by removing extracellular Ca2+. TMB-8 demonstrated only minor to non-existant inhibitory effects on phosphorylation in thrombin- or A23187-stimulated platelets. In contrast to P9P phosphorylation, phosphorylation of P7P caused by platelet activating factor was more dependent on a TMB-8 sensitive step than on the availability of extracellular Ca2+. Experiments with buffers containing fixed concentrations of free Ca2+ revealed that both processes (release and phosphorylation), when stimulated by platelet activating factor and thrombin, had the same threshold requirement (1–3 μM) for extracellular free Ca2+. These studies provide evidence that stimulation of rabbit platelets by platelet activating factor is more dependent on a TMB-8-sensitive intracellular Ca2+ source than is stimulation caused by thrombin. Furthermore, our data indicate that activation of different intracellular processes involved in platelet secretion (such as P7P and P9P phosphorylation) may require Ca2+ from different pools.  相似文献   

14.
The dependence of the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles upon the intravesicular concentration of calcium accumulated after active uptake was studied. The internal calcium concentration was modified by addition of the ionophore A23187 at the steady state of accumulation. About half of the calcium accumulated could be released at low ionophore concentration without any concomitant activation of the Ca2+-ATPase. This population of calcium might consist of calcium free in the lumen of the vesicles or bound to the bilayer at sites which do not interact with the ATPase activity. At higher concentrations of ionophore (above 1.75 nmol A23187/mg protein) the release of calcium activated this enzyme. This phenomenon was independent of the extravesicular calcium concentration and might be explained by assuming second species of calcium ions bound to the inner side of the membrane and in close functional interaction with the Ca2+-ATPase.  相似文献   

15.
The sea urchin egg contains a protein kinase which phosphorylates tyrosine residues of endogenous membrane proteins as well as synthetic peptide substrates. Fertilization results in an increase in tyrosine kinase activity which first becomes apparent 20–30 min postinsemination and continues throughout the early cleavage stages. This effect can be duplicated by treating unfertilized eggs with the calcium ionophore A23187. The kinase activity begins to increase about 20 min after addition of the ionophore and continues to increase for at least 1 hr. Both the time course and the extent of kinase activity in ionophore treated eggs closely resemble the effects of fertilization. The concentration of ionophore necessary to induce the increase in enzyme activity (2–5 μM) is also effective in inducing the cortical reaction. Neither A23187 nor calcium has a significant effect on the kinase activity of egg homogenates solubilized in NP40, suggesting that the ionophore affects tyrosine phosphorylation indirectly, possibly acting through other calcium-sensitive enzymes.  相似文献   

16.
The role of ionized calcium in the early phases of activation of human peripheral blood lymphocytes was evaluated by stimulating the cells with a calcium ionophore A23187 (Lilly) or with mitogenic lections over a broad range of extracellular calcium concentrations (< 1 to > 1000 μM). A number of biochemical parameters shown previously to be altered during stimulation of these cells by mitogenic lectins were studied including: 1) amino acid transport, 2) phosphatidylinositol turnover, 3) cyclic nucleotide accumulation, and 4) calcium uptake. The ionophore (0.1–0.5 μg/ml) was shown to produce stimulatory effects in all of these systems with the changes closely simulating those produced by the lectins themselves both in regard to time course and magnitude. A23187 also produced 5–10 fold increases in DNA synthesis as measured at 48–72 hr after exposure of the cells to this agent. The responses to A23187 were shown to be almost completely dependent on the presence of ionized calcium. Since mitogenic lectins are known to stimulate calcium uptake and DNA synthesis appears to require extracellular calcium, the early responses to A23187 suggested that calcium was important both during the early and later phases of lymphocyte activation. However, short time course studies of amino acid transport, cyclic AMP accumulation, and phosphatidylinositol turnover in calcium deficient media failed to provide convincing evidence of calcium dependency in lectin stimulation since the three responses were well preserved (<25% inhibition) in “calcium free” medium containing 1–3 mM ethylene bis (ethylene oxynitrilo) tetraacetic acid (EGTA) (an estimated final Ca2+ concentration of <1 μM). Greater than 50% inhibition of the lectin response was seen only when the cells were incubated in calcium free, EGTA-containing medium for 30 min prior to stimulation with lectin. Thus despite the striking ability of A23187 complexed with calcium to mimic the action of mitogenic lectins, its effects may involve more than simple transport of calcium into the cell. A23187 may also exert a direct membrane action as suggested by its ability to produce rapid increases in cAMP and the occurrence of cytotoxicity at 5–10 fold higher concentrations (2–4 μg/ml). However, these data do not entirely exclude a mechanism of ionophore action whereby: 1) mobilization of intracellular stores of calcium and 2) diminished intracellular transport of ionized calcium at extracellular concentrations less than or equal to 1 μM combine to provide an effective stimulus for cellular activation.  相似文献   

17.
Membrane vesicles from pigeon erythrocytes show a rapid, ATP-dependent accumulation of 45Ca2+. Ca2+ accumulation ratios greater than or approximately equal to 104 are readily attained. For ATP-dependent Ca2+ uptake, V is 1.5 mmol · 1?1 · min?1 at 27°C (approx. 0.9 nmol · mg?1 protein · min?1), [Ca2+]12 is 0.18 μM, [ATP]12 is 30–60 μM, the Ca2+ uptake rate depends on [Ca2+]2 and the dependence of uptake rate on ATP concentration implies strong ATP-ATP cooperativity. The Arrhenius activation energy is 19.1 ± 1.4 kcal/mol and the pH optimum is approx. 6.9.  相似文献   

18.
Ca2+-transport and its energy consumption were studied in intact human red cells loaded with Ca2+ by the aid of the ionophore A23187.After the complete elimination of the ionophore the passive Ca2+-permeability of the membrane returned to its normal low value, except when the intracellular Ca2+-concentration was higher than 3 mM or the ATP level fell below 100 μM. Within these limits the rate of Ca2+-extrusion was independent of the cellular ATP content but was greatly enhanced by increasing [Ca2+]i and reached a plateau at about 1 mM intracellular Ca2+-concentration. The maximum rate of Ca2+-efflux was about 85 μmol/l of cells per min at 37°C, pH 7.4. The activation energy of active Ca2+-extrusion was found to be 15 200 cal/mol, and the optimum pH in the suspension was 7.7.Ca2+-efflux was not connected with the counter-transport of cations.The Ca2+-pump was not affected by ouabain or oligomycin and only partial inhibition could be achieved by the SH-reagents: ethacrynic acid, N-ethylmaleimide and p-chloromercuribenzoate or with propranolol and ruthenium red. An 80 to 95% inhibition of the active Ca2+-extrusion was brought about by 50–250 μM lanthanum, which in the above concentrations caused no aggregation or haemolysis. The inhibition of the Ca2+-pump by lanthanum was found to be reversible, the site of inhibition being at the external surface of the cell membrane.To examine the energy consumption of the Ca2+-extrusion, ATPase activity was assessed by measuring inorganic phosphate liberation in Ca2+-loaded red cells the metabolism of which was inhibited by iodoacetamide + Na+-tetrathionate. Ca2+-activated ATPase activity connected with the Ca2+-pump was distinguished from other Ca2+-ATPase by using the non-penetrating inhibitor, lanthanum. The molar ratio of Ca2+-transported per ATP split was found to be 2 : 1.  相似文献   

19.
Ca2+-sensitive electrodes and the photoproteins obelin and aequorin were used with the oocytes of the anuran Xenopus laevis and the urodeles Ambystoma mexicanum and Pleurodeles waltlii in order to detect any changes in internal free Ca2+ which might result from progesterone or agonist stimulation. A dramatic Ca2+ surge was recorded: from 0.7 × 10?6M in the unstimulated oocyte to 7 × 10?6M after stimulation but before germinal vesicle breakdown (GVBD). Ca2+ efflux was also measured, but it accounted for less than 0.2% of the internal Ca2+ transient; this efflux did not take place in the absence of external calcium. The Ca2+ surge and maturation in response to progesterone, p-hydroxymethylenesulfonate (PHMPS), or Mn2+ occurred normally even when divalent cations were absent from the external medium. In contrast, external divalent cations were necessary for the induction of meiosis and a Ca2+ transient by the K+ ionophore valinomycin. HCO3? also triggers meiosis and causes Ca2+ release, but the release occurs with quite different kinetics. Incompletely grown or seasonally dormant oocytes as well as 10 mM theophilline- or procaine-treated oocytes neither release Ca2+ nor respond to the hormone. We conclude that intracellular released Ca2+ is likely to be the major “second messenger” following hormone stimulation in amphibian oocytes as in starfish.  相似文献   

20.
1. The ionophore X-537A increases the rate of catecholamine release from the in vitro frog adrenal.2. The ratio of epinephrine/norepinephrine measured during X-537A stimulation was the same as that during spontaneous release.3. Even when Ca++ was removed from the Ringer, X-537A stimulated catecholamine release, but depolarization by elevated extra-cellular K+ was no longer effective.4. X-537A also increases the release of dopamine β-hydroxylase, suggesting that the ionophore acts, at least in part, by stimulating the exocytosis of the chrommaffin granule contents.5. Therefore, it is questionable whether the release of catecholamines by X-537A is owing to its action as a Ca++- ionophore.6. The divalent cation ionophore, A-23187 (50μM), did not affect the rate of catecholamine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号