首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Neomycin appears as a full agonist and spermidine as a partial agonist at the site where polyamines enhance 1-[1-(2-thienyl)cyclohexyl][3H]piperidine ([3H]TCP) binding on the N-methyl-D-aspartate (NMDA) receptor. Other aminoglycosides also enhance [3H]TCP binding with efficacies roughly proportional to the number of primary amine groups. The polyamine antagonists ifenprodil and arcaine inhibit enhancement of [3H]TCP binding by spermidine or neomycin. The inhibition of [3H]TCP binding by arcaine is apparently competitively reduced by neomycin and spermidine, supporting a common site. Diethylenetriamine (previously described as a polyamine antagonist) may be a partial agonist. Enhancement by neomycin or spermidine is not additive to that of Mg2+, consistent with competition of Mg2+ and spermidine or neomycin at the site where these compounds enhance [3H]TCP binding. Polyamines also enhance the binding of the competitive antagonist 2-(2-carboxypiperazin-4-yl)[3H]propyl-1-phosphonic acid ([3H]CPP). Neomycin, which does not enhance [3H]CPP binding, inhibits the enhancement by spermidine. That this site is distinct from the site where spermidine and neomycin increase [3H]TCP binding is supported by different pharmacology. Arcaine and diethylenetriamine do not inhibit spermidine enhancement of [3H]CPP binding. Mg2+ also does not compete with the spermidine enhancement of [3H]CPP binding. Ifenprodil inhibits the spermidine enhancement of [3H]CPP binding. The data suggest two or more polyamine sites, with arcaine selective for the site that enhances [3H]TCP binding. Neomycin is an agonist at one polyamine site and antagonist to the second.  相似文献   

2.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   

3.
Aromatic analogs of arcaine were shown to have inhibitory effects on the binding of the channel blocking drug [3H]MK-801 to the NMDA receptor complex. The most potent compound of the series was an N,N′-bis(propyl)guanidinium which inhibited [3H]MK-801 binding with an IC50 of 0.58 μM and an IC50 of 12.17 μM upon addition of 100 μM spermidine. The increase in IC50 upon addition of spermidine suggests competitive antagonism between the inhibitor and spermidine at the arcaine-sensitive polyamine site of the NMDA receptor complex.  相似文献   

4.
The binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate ([3H]MK-801) and N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) to the N-methyl-D-aspartate (NMDA) receptor complex of human brain has been investigated. Significant differences were noted between the binding of the two ligands in the same tissue samples. Binding of both ligands was stimulated by addition of glutamic acid or glycine. However, addition of both compounds resulted in an additional effect with [3H]MK-801 but not [3H]TCP binding. Saturation analysis revealed approximately twice as many high-affinity sites for [3H]MK-801 (Bmax, 1,500 +/- 300 fmol/mg of protein) than for [3H]TCP (Bmax, 660 +/- 170 fmol/mg of protein). In addition, a low-affinity site was detected for [3H]MK-801 binding but not [3H]TCP binding. The pharmacology of the high-affinity [3H]MK-801 and [3H]TCP binding sites was similar with rank order of potency of inhibitors being MK801 greater than TCP greater than phencyclidine greater than N-allylnormetazocine (SKF 10047). 2-Amino-5-phosphonopentanoate inhibited binding of both ligands with comparable potency whereas both 7-chlorokynurenic acid and ZnCl2 were more potent inhibitors of [3H]MK-801 than of [3H]TCP binding. All compounds examined exhibited Hill coefficients of significantly less than unity. Saturation analysis performed in the striatum revealed that the number of binding sites was the same for both [3H]MK-801 (Bmax, 1,403 +/- 394 fmol/mg) and [3H]TCP (Bmax, 1,292 +/- 305 fmol/mg). Addition of glutamate or glycine stimulated striatal binding but there was no further increase on addition of both together.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The endogenous polyamines spermine and spermidine increase the binding of [3H]MK-801 to NMDA receptors. This effect is antagonized by diethylenetriamine (DET). We report here that spermine increases the rates of both association and dissociation of binding of [3H]MK-801, suggesting that it increases the accessibility of the binding site for MK-801 within the ion channel of the receptor complex. 1,10-Diaminodecane (DA10) inhibited the binding of [3H]MK-801. This effect was due to a decrease in the rate of association with no change in the rate of dissociation of [3H]MK-801. The effect of DA10 was not mediated by an action of DA10 at the binding sites for glutamate, glycine, Mg2+, or Zn2+, and was attenuated by DET. This suggests that DA10 acts at the polyamine recognition site. In hippocampal neurons the NMDA-elicited current was decreased by DA10, an effect opposite to that of spermine. The effects of spermine and DA10 were selectively blocked by DET. It is concluded that DA10 acts as a negative allosteric modulator or inverse agonist at the polyamine recognition site of the NMDA receptor.  相似文献   

6.
Sun W  Wessinger WD 《Life sciences》2004,75(12):1405-1415
The ability of non-competitive NMDA antagonists and other selected compounds to inhibit [3H]MK-801 binding to the NMDA receptor in brain membranes was evaluated in female, dark Agouti rats. In homologous competition binding studies the average apparent affinity (KD) of [3H]MK-801 for its binding site was 5.5 nM and the binding site density (Bmax) was 1.83 pmol/mg protein. Inhibition of [3H]MK-801 binding by non-competitive NMDA antagonists was best described with a one-site competition model and the average Hill coefficients were -1. A series of eight non-competitive NMDA antagonists inhibited [3H]MK-801 binding with the following rank order of affinity (K(i), nM): MK-801 (5.5) > dexoxadrol (21.5) > or = TCP (24.2) > phencyclidine (100.8) > (+)-SKF 10,047 (357.7) > dextrorphan (405.2) > ketamine (922.2) > dextromethorphan (2913). These inhibition binding constants determined in dark Agouti rat brain membranes were significantly correlated (P = 0.0002; r2 = 0.95) with previously reported values determined in Sprague-Dawley rats [Wong et al., 1988, J. Neurochem. 50, 274-281]. Despite significant differences in metabolic capability between these strains, the central nervous system NMDA receptor ion channel shares similar characteristics.  相似文献   

7.
The effects of a cerebral anti-ischemic drug ifenprodil on the receptor ionophore complex of an N-methyl-D-aspartate (NMDA)-sensitive subclass of central excitatory amino acid receptors were examined using [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10- imine (MK-801) binding in rat brain synaptic membrane preparations as a biochemical measure. The binding in membrane preparations not extensively washed was markedly inhibited not only by competitive NMDA antagonists such as (+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic, D-2-amino-5-phosphonovaleric and D-2-amino-7-phosphonoheptanoic acids, but also by competitive antagonists at the strychnine-insensitive glycine (Gly) site including 7-chlorokynurenic acid and 6,7-dichloroquinoxaline-2,3-dione. Among several proposed ligands for alpha-adrenergic receptors tested, ifenprodil most potently inhibited the binding in these membrane preparations due to a decrease in the density of the binding sites without significantly affecting the affinity. Ifenprodil also inhibited the binding of [3H]N-[1-(2-thienyl)cyclohexyl]piperidine as well as of [3H]MK-801 to open NMDA channels in a concentration-dependent manner at concentrations above 10 nM in membrane preparations extensively washed but not treated by a detergent, with a Hill coefficient of less than unity. Further treatment of extensively washed membrane preparations with a low concentration of Triton X-100 resulted in an almost complete abolition of [3H]MK-801 binding, and the binding was restored to the level found in membrane preparations not extensively washed following the addition of both L-glutamic acid (Glu) and Gly. Ifenprodil was effective in inhibiting [3H]MK-801 binding via reducing both initial association and dissociation rates in Triton-treated membrane preparations, irrespective of the presence of Glu and Gly added. The binding in Triton-treated membrane preparations was additionally potentiated by the polyamine spermidine in a concentration-dependent manner at concentrations above 10 microM in the presence of both Glu and Gly at maximally effective concentrations. Ifenprodil invariably diminished the abilities of these three stimulants to potentiate [3H]MK-801 binding at concentrations over 1 microM in a manner that the maximal responses each were reduced. These results suggest that ifenprodil does not interfere with the NMDA receptor complex as a specific isosteric antagonist at the polyamine domain in contrast to the prevailing view.  相似文献   

8.
Abstract: Micromolar concentrations of β-amyloid (25–35) or substance P stimulated [3H] MK-801 binding in the presence of low concentrations of glutamate (1 γM) and glycine (0.02 γM). Unlike polyamines spermine and spermidine, neither β-amyloid (25–35) nor substance P increased [3H] MK-801 binding in the presence of maximally stimulating concentrations of glutamate and glycine. 5,7-Dichloro-kynurenic acid, CGS-19755, and arcaine completely inhibited the stimulated [3H] MK-801 binding. There was an apparent decreased potency of the [3H] MK-801 binding inhibition curve for 5,7-dichlorokynurenic acid, but not CGS-19755 or arcaine, in the presence of either β-amyloid (25–35) or substance P. The compounds do not appear to act through the strychnine-insensitive glycine binding site because neither β-amyloid (25–35) nor substance P displaced [3H] glycine binding. Full-length β-amyloid (1-40), up to 10 γM, did not stimulate [3H] MK-801 binding. Concentrations >10 γM could not be tested because they formed large aggregate precipitates in the assay. The data indicate that β-amyloid (25–35) or substance P does not stimulate [3H] MK-801 binding at either the N-methyl-D-aspartate, glycine, or polyamine binding sites. Furthermore, the nonpeptide substance P receptor (NK,) antagonist, CP-96,345, did not block β-amyloid (25–35)- or substance P-stimulated [3H] MK-801 binding. Therefore, the effect is not due to an interaction between the substance P receptors and the N-methyl-D-aspartate receptor-operated ionophore. Finally, if these observations can be verified using single-channel recording techniques, they may have implications in the pattern of selective neuronal loss observed in patients with neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases.  相似文献   

9.
Abstract: This study used [3H] dizocilpine ([3H] MK-801) binding to the N-methyl-D-aspartate (NMDA) receptor to examine redox, polyamine, and glycine modulatory sites in membranes derived from the superior frontal and the superior temporal cortex of patients with Alzheimer's disease. In control subjects the competitive polyamine site antagonist arcaine inhibited [3H] dizocilpine binding in a dose-dependent fashion and this curve was shifted to the right by the addition of 50 μM spermidine. Arcaine inhibition of binding was more potent in the temporal cortex than in the frontal cortex, in both the absence and presence of 50 μMspermidine. In Alzheimer's disease, arcaine inhibition of [3H] dizocilpine binding (in both the absence and the presence of spermidine) was not different from control in either of the two brain areas examined. The sulfhydryl redox site of the NMDA receptor was assessed using the oxidizing agent 5, 5′-dithio-bis(2-nitrobenzoic acid), which inhibited binding in a dose-dependent fashion. This inhibition was similar in patients with Alzheimer's disease and control subjects. Glycine-stimulated [3H] dizocilpine binding was also unaffected in patients with Alzheimer's disease. However, in the temporal cortex there was a significant age-associated decline in [3H] dizocilpine binding in the presence of 100 μM glutamate (R8=-0.71) and 100 μM glutamate plus 30 μM glycine (R8=?0.90). There was also an age-related increase in arcaine IC50 (which reflects an age-related decrease in arcaine affinity) in the frontal cortex, determined both in the absence (R8= 0.83) and the presence (R8= 0.79) of spermidine. These data indicate that the NMDA receptor and its modulatory redox, polyamine, and glycine subsites are intact in patients with Alzheimer's disease and that the modulatory activity of polyamine and glycine sites decline with aging.  相似文献   

10.
Conantokins T and G are polypeptide toxins present in snails of the genus Conus. These substances were recently reported to act as N-methyl-D-aspartate (NMDA) antagonists. In the present study, we examined the possible mechanisms producing this antagonism. Conantokin-G inhibited spermine- and spermidine-stimulated [3H]MK-801 binding to extensively washed rat forebrain membranes in a noncompetitive manner with IC50 values of approximately 507 and approximately 946 nM, respectively. In contrast, glutamate-enhanced [3H]MK-801 binding was unaffected by conantokin-G concentrations of less than or equal to 20 microM. At concentrations greater than or equal to 5 microM, conantokin-G effected a modest, noncompetitive inhibition of glycine-stimulated [3H]MK-801 binding and also produced a small enhancement of basal [3H]MK-801 binding. Conantokin-G reduced (IC50 approximately 1.08 microM) the NMDA-stimulated accumulation of cyclic GMP in cerebellar granule cell cultures to basal values, but did not affect kainate-mediated increases in cyclic GMP. These findings indicate that conantokin-G acts as a noncompetitive NMDA antagonist through an allosteric inhibition of polyamine responses. The neurochemical profile of this polypeptide is distinct from previously described noncompetitive NMDA antagonists.  相似文献   

11.
Abstract

Cooperative modulation of [3H]MK-801 binding to extensively washed pig cortical brain membranes in the presence of various concentrations of L-glutamate, glycine, spermine, CPP and DCKA was evaluated in association experiments. In saturation experiments [3H]MK-801 labelled a homogeneous population of binding sites with a Kd-value of 1.26 ± 0.18 nmol 1?1 and a Bmax-value of 2130 ± 200 fmol/mg protein. The pharmacological profile of this site was further evaluated in competition experiments with known NMDA receptor channel blockers. In nonequilibrium binding experiments EC50-values of reference compounds acting at the L-glutamate, at the glycine, and at the polyamine site, were determined by increasing or decreasing [3H]MK-801 binding. Ifenprodil reduced [3H]MK-801 binding in a biphasic manner. All the data obtained are in agreement with results from [3H]MK-801 binding to rodent as well as human brain membranes. This study therefore strongly suggests, that pig cortical membranes are a suitable alternative to rodent brain membranes, and an acceptable substitute for human brain membranes in [3H]MK-801 binding experiments.  相似文献   

12.
ES-242-1 approximately 5 are novel microbial bioxanthracenes which do not contain nitrogen. The ES-242s inhibited the binding of [3H]TCP and [3H]CGS19755 to the N-methyl-D-aspartate (NMDA) receptor complex. They had no effect on the binding of the specific ligands for the non-NMDA receptor. The biochemical and pharmacological properties of ES-242-1 were fully examined since it is the most potent of the five compounds. ES-242-1 is highly specific for the NMDA receptor; it has no effect on other receptors. Kinetic analyses indicated that ES-242-1 inhibited the binding of [3H]TCP and [3H]CGS19755 in a competitive manner, respectively, suggesting that ES-242-1 interacts with both the transmitter recognition site and the channel domain. ES-242-1 selectively inhibited NMDA-induced Ca2+ influx in primary cultures of mouse hippocampal neurons. ES-242-1 also specifically blocked the increase in cyclic GMP accumulation induced by NMDA or L-glutamate in rat cerebellar slices. In a concentration range of 0.1-1.0 microM, ES-242-1 was as potent as MK-801 in preventing glutamate-induced neurotoxicity in primary cultures of mouse hippocampal neurons. These results show that ES-242-1 is a potent and specific antagonist for the NMDA receptor. The antagonistic properties of the ES-242s appear to be due to a novel mechanism of action at the NMDA receptor.  相似文献   

13.
Spermine and spermidine enhance the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-imine ([3H]MK-801) to N-methyl-D-aspartate (NMDA) receptors in membranes prepared from rat brain. These polyamines also enhance binding of [3H]MK-801 to NMDA receptors that have been solubilized with deoxycholate. Other polyamines selectively antagonize this effect, a finding indicating that the polyamine recognition site retains pharmacological and structural specificity after solubilization. In the presence of spermidine, an increase in the affinity of the solubilized NMDA receptor for [3H]MK-801 is observed. However, the rates of both association and dissociation of [3H]MK-801 binding to solubilized NMDA receptors are accelerated when assays are carried out in the presence of spermidine. When kinetic data are transformed, pseudo-first-order association and first-order dissociation plots are nonlinear in the presence of spermidine, an observation indicating a complex binding mechanism. Effects of spermidine on solubilized NMDA receptors are similar to effects previously described in studies of membrane-bound receptors. The data indicate that polyamines interact with a specific recognition site that remains associated with other components of the NMDA receptor complex after detergent solubilization.  相似文献   

14.
Abstract: Polyamines have pronounced effects on N-methyl-D-aspartate (NMDA) receptors in vitro and may be important modulators of NMDA receptor activity in vivo. There is considerable regional heterogeneity in the effects of polyamines on [3H]MK-801 binding in rat brain sections. For example, spermidine enhances the binding of [3H]MK-801 to a much greater extent in the striatum than in the cortex. To further explore the basis for this regional heterogeneity, the effects of polyamines on [3H]MK-801 binding were measured in well-washed membranes prepared from frontal cortex and striatum. There was no difference in the concentration-response relationship for spermidine or the KD for [3H]MK-801 in the presence of 75 μM spermidine, suggesting that the regional difference seen in tissue sections is due to an endogenous factor that is either removed or inactivated during the preparation of membranes. Comparison of spermidine concentration-response curves in washed and unwashed tissue sections revealed that washing selectively enhanced the Emax value in the ventromedial caudate putamen without changing the EC50. This is consistent with the possibility that a noncompetitive polyamine antagonist is being removed from this region during washing. There was no regional variability in the effects of the putative inverse agonist 1, 10-diaminodecane, consistent with recent suggestions that this polyamine inhibits the NMDA receptor at a site distinct from the one at which polyamines act to enhance NMDA receptor function. Agents that modulate the redox state of the NMDA receptor did not eliminate the regional heterogeneity of polyamine effects. Furthermore, the stimulatory effect of glycine in these regions did not correlate with that of spermidine. These results suggest the existence of one or more endogenous factors that noncompetitively influence the effects of polyamines in a regionspecific manner.  相似文献   

15.
Multiple binding sites on the N-methyl-D-aspartate (NMDA) receptor complex were examined using rat brain synaptic membranes treated with Triton X-100. Binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801), a noncompetitive NMDA antagonist, in the presence of 10 microM L-glutamate not only was inhibited by different types of antagonists, such as 6,7-dichloro-3-hydroxy-2-quinoxaline-carboxylate, 7-chlorokynurenate, and 6,7-dichloroquinoxaline-2,3-dione (DCQX), but also was abolished by non-NMDA antagonists, including 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. The inhibition of [3H]MK-801 binding by these compounds was invariably reversed or attenuated by addition of 10 microM glycine. Among these novel antagonists with an inhibitory potency on [3H]MK-801 binding, only DCQX abolished [3H]glycine binding without inhibiting [3H]glutamate and [3H](+-)-3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate bindings. Other antagonists examined were all effective as displacers of the latter two bindings. These results suggest that DCQX is an antagonist highly selective to the strychnine-insensitive glycine binding sites with a relatively high affinity.  相似文献   

16.
NMDA receptors are glutamate-regulated ion channels that are of great importance for many physiological and pathophysiological conditions in the mammalian central nervous system. We have previously shown that, at low pH, glutamate decreases binding of the open-channel blocker [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten, 5,10-imine ([3H]MK-801) to NMDA receptors in the presence of 1 mM Mg2+ but not in Krebs buffer. Here, we investigated which cations that block the glutamate-induced decrease in Krebs buffer, using [3H]MK-801 binding assays in membrane preparations from the rat cerebral cortex. At pH 6.0, Na+, K+, and Ca2+ antagonized the glutamate-induced decrease with cross-over values, which is a measure of the antagonist potencies of the cations, of 81, 71, and 26 mM, respectively, in the absence of added glycine. Thus, in Krebs buffer only the concentration of Na+ (126 mM) is sufficiently high to block the glutamate-induced decrease observed at low pH. In the presence of 1 mM Mg2+ and 10 mM Ca2+ at pH 7.4, the cross-over values for Na+, K+, and Ca2+ were 264, 139, and 122 mM, respectively, in the absence of added glycine. This is the same rank order of potency as observed at pH 6.0, suggesting that the less H+-sensitive and the less Ca2+-sensitive, glutamate-induced decreases in [3H]MK-801 binding represent the same entity. The glycine site antagonists 7-chlorokynurenate (10 microM) and 7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(H)-quinoline (L-701,324; 1 microM) antagonized the glutamate-induced decrease in [3H]MK-801 binding observed in presence of Mg2+ at pH 6.0, suggesting that glycine is required together with glutamate to induce the decrease observed at low pH. These results suggest that in addition to a previously described high-affinity binding site for H+ and Ca2+ there exist a low-affinity binding site for H+, Ca2+, Na+, and K+ on NMDA receptors. The latter site may under physiological conditions be blocked by Na+ or K+, depending on the extra/intracellular localization of the modulatory site. Both the high-affinity and low-affinity cation sites mediate antagonistic effects on the glutamate- and glycine-induced decrease of the affinity of the [3H]MK-801 binding site, which may correspond to similar changes in the affinity of the voltage-sensitive Mg2+-block site inside the NMDA receptor channel pore, which in turn may affect current and Ca2+ influx through activated NMDA receptor channels.  相似文献   

17.
Abstract: To clarify the regulatory mechanism of the N -methyl- d -aspartate (NMDA) receptor/channel by several protein kinases, we examined the effects of purified type II of protein kinase C (PKC-II), endogenous Ca2+/calmodulin-dependent protein kinase II (CaMK-II), and purified cyclic AMP-dependent protein kinase on NMDA receptor/ channel activity in the postsynaptic density (PSD) of rat brain. Purified PKC-II and endogenous CaMK-II catalyzed the phosphorylation of 80–200-kDa proteins in the PSD and l -glutamate-(or NMDA)-induced increase of (+)-5-[3H]methyl-10, 11-dihydro-5 H -dibenzo[a, d]cyclohepten-5, 10-imine maleate ([3H]MK-801; open channel blocker for NMDA receptor/channel) binding activity was significantly enhanced. However, the pretreatment of PKC-II-and CaMK-II-catalyzed phosphorylation did not change the binding activity of l -[3H]glutamate, cis -4-[3H](phospho-nomethyl)piperidine-2-carboxylate ([3H]CGS-19755; competitive NMDA receptor antagonist), [3H]glycine, α-[3H]-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, or [3H]-kainate in the PSD. Pretreatment with PKC-II-and CaMK-II-catalyzed phosphorylation enhanced l -glutamate-induced increase of [3H]MK-801 binding additionally, although purified cyclic AMP-dependent protein kinase did not change l -glutamate-induced [3H]MK-801 binding. From these results, it is suggested that PKC-II and/or CaMK-II appears to induce the phosphorylation of the channel domain of the NMDA receptor/channel in the PSD and then cause an enhancement of Ca2+ influx through the channel.  相似文献   

18.
Rat brain cortical slices released tritiated norepinephrine ([3H]NA) during a 2-min stimulation with N-methyl-D-aspartate (NMDA). Dithiothreitol (DTT; 0.1-5 mM), present for 6 min prior to stimulation, dose-dependently increased the release of [3H]NA from cortical slices stimulated with a maximally effective concentration of NMDA (500 microM). Similar results were observed for [3H]NA release from hippocampal slices and tritiated and endogenous dopamine release from striatal slices. DTT treatment also markedly shifted the dose-response curve of NMDA to the left. Cortical slices released approximately the same amount of [3H]NA with 10 microM NMDA following DTT treatment (about 5%) as non-DTT-treated control slices did with 500 microM NMDA. The effects of DTT were fully reversed by subsequent treatment with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB; 0.5 mM). DTT treatment did not significantly alter the ability of magnesium (1.3 mM) or the polyamine antagonist arcaine to block the NMDA-stimulated release of [3H]NA. In contrast, DTT treatment significantly attenuated the antagonist effects of the competitive glycine antagonist, 7-chlorokynurenic acid, and the competitive NMDA antagonist, 2-aminophosphonopentanoic acid. These results suggest that oxidation and reduction of disulfide bonds located within the NMDA receptor complex might regulate the activation of the NMDA receptor. This could have important consequences in vivo if endogenous oxidizing/reducing systems are found to have similar effects on NMDA-stimulated responses.  相似文献   

19.
We used a series of adamantane derivatives to probe the structure of the phencyclidine locus in either the resting or desensitized state of the nicotinic acetylcholine receptor (AChR). Competitive radioligand binding and photolabeling experiments using well-characterized noncompetitive antagonists such as the phencyclidine analogue [piperidyl-3,4-(3)H(N)]-N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([(3)H]TCP), [(3)H]ethidium, [(3)H]tetracaine, [(14)C]amobarbital, and 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) were performed. Thermodynamic and structure-function relationship analyses yielded the following results. (1) There is a good structure-function relationship for adamantane amino derivatives inhibiting [(3)H]TCP or [(3)H]tetracaine binding to the resting AChR. (2) Since the same derivatives inhibit neither [(14)C]amobarbital binding nor [(125)I]TID photoincorporation, we conclude that these positively charged molecules preferably bind to the TCP locus, perhaps interacting with alphaGlu(262) residues at position M2-20. (3) The opposite is true for the neutral molecule adamantane, which prefers the TID (or barbiturate) locus instead of the TCP site. (4) The TID site is smaller and more hydrophobic (it accommodates neutral molecules with a maximal volume of 333 +/- 45 A(3)) than the TCP locus, which has room for positively charged molecules with volumes as large as 461 A(3) (e.g., crystal violet). This supports the concept that the resting ion channel is tapering from the extracellular mouth to the middle portion. (5) Finally, although both the hydrophobic environment and the size of the TCP site are practically the same in both states, there is a more obvious cutoff in the desensitized state than in the resting state, suggesting that the desensitization process constrains the TCP locus. A plausible location of neutral and charged adamantane derivatives is shown in a model of the resting ion channel.  相似文献   

20.
Thirty-four spermidine (SPD) and spermine (SPM) derivatives with aromatic substituents were synthesized and tested as inhibitors of specific binding of the NMDA channel blocker [3H]MK-801 to membranes prepared from rat hippocampus and cerebral cortex. SPD and SPM derivatives with aromatic substituents at the primary amino groups were the most potent inhibitors (IC50 3.9-4.7 microM). These compounds most likely act directly at the NMDA ion channel, since 30 microM SPM had no pronounced influence on their inhibiting activities. SPD derivatives with aromatic substituents at the secondary amino group were either inactive or highly SPM-sensitive inhibitors (IC50 10-82 microM), depending on the size of the substituent. Our results support the hypothesis that an aromatic interaction site near the center of polyamine derivatives contributes to polyamine inverse agonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号