首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secretion of a Serratia marcescens nuclease was followed by fermentation with Escherichia coli. A plasmid, p403-SD2, carrying a 1.3-kilobase-pair insert with a 0.4-kilobase-pair region upstream of the nuclease gene caused a growth-phase-regulated expression of nuclease in E. coli in the same way as that seen in S. marcescens. Deletion of the regulatory gene generating plasmid p403-Rsa1 resulted in a constitutive expression of the nuclease. Anaerobiosis stimulated the expression from p403-SD2 in stationary growth phase by a factor of 10 compared with expression stimulated by cultivation in aerobic conditions; no such effect was found for plasmid p403-Rsa1. Different nutritional factors caused the expression level and the amount of extracellular nuclease to vary more when nuclease was expressed from plasmid p403-SD2 than when it was expressed from plasmid p403-Rsa1. A correlation between the regulatory gene and the extracellular secretion of nuclease is proposed.  相似文献   

2.
T K Ball  P N Saurugger  M J Benedik 《Gene》1987,57(2-3):183-192
We are studying exoproteins of the enteric bacterium Serratia marcescens as a model system for the release of extracellular proteins from the cell. In this work we report the cloning of the gene for a secreted nuclease from S. marcescens and its complete nucleotide sequence. Following expression of the nuclease gene in both S. marcescens and Escherichia coli we were able to demonstrate the presence of the nuclease extracellularly in both organisms. Cell lysis did not occur and there was no concurrent release of cytoplasmic or periplasmic proteins. No accessory genes appeared to be required for extracellular secretion of the nuclease from E. coli. We can conclude that E. coli is capable of secreting certain proteins extracellularly, and may be a suitable host organism for the genetic analysis of extracellular protein secretion when provided with a suitable protein to export.  相似文献   

3.
Y Suh  S Jin  T K Ball    M J Benedik 《Journal of bacteriology》1996,178(13):3771-3778
  相似文献   

4.
Extracellular secretion of the Serratia marcescens nuclease occurs in a two-step process: (i) rapidly to the periplasm via a signal sequence-dependent pathway and then (ii) slowly to the extracellular growth medium without cell lysis. There are two major isoforms of the nuclease in the culture supernatant of S. marcescens. We have isolated, purified, and determined the sequences of both isoforms. The first isoform, the mature nuclease (Sm2), is the result of signal sequence processing. The second isoform (Sm1) has three additional amino acids missing from the N terminus of the mature nuclease. Sm1 starts to appear extracellularly only during prolonged growth of a culture (16 to 48 h), probably because of cell lysis. However, pulse-chase experiments show that it is made early with Sm2 but is not secreted efficiently.  相似文献   

5.
Abstract The gene encoding an extracellular nuclease of Serratia marcescens was cloned in Escherichia coli using the vector pBR322. Transformants were selected by their ability to grow in the presence of ampicillin, and nuclease-positive clones were detected on a commercially available DNase test agar. The production of a nuclease could be detected in recombinant strains and enzyme activity was found in culture supernatants of such strains. Deletion derivatives of the parental recombinant plasmid were constructed to define the region of DNA encoding the expression of the nuclease. The smallest DNA fragment found to produce the nuclease was determined to be 2.2 kb in length, although a somewhat smaller fragment appeared to be partially active.  相似文献   

6.
7.
A cosmid bank of Serratia marcescens was established from which DNA fragments were cloned into the plasmid pBR322, which conferred the chromosomally encoded hemolytic activity to Escherichia coli K-12. By transposon mutagenesis with Tn1000 and Tn5 IS50L::phoA (TnphoA), the coding region was assigned to a DNA fragment, designated hly, comprising approximately 7 kilobases. Two proteins with molecular weights of 61,000 (61K protein) and 160,000 (160K protein) were expressed by the pBR322 derivatives and by a plasmid which contained the hly genes under the control of a phage T7 promoter and the T7 RNA polymerase. When strongly overexpressed the 160K protein was released by E. coli cells into the extracellular medium concomitant with hemolytic activity. The genes encoding the 61K and the 160K proteins were transcribed in the same direction. Mutants expressing a 160K protein truncated at the carboxy-terminal end were partially hemolytic. Hemolysis was progressively inhibited by saccharides with increasing molecular weights from maltotriose (Mr 504) to maltoheptaose (Mr 1,152) and was totally abolished by dextran 4 (Mr 4,000). This result and the observed influx of [14C]sucrose into erythrocytes in the presence of hemolytic E. coli transformants under osmotically protective conditions suggest the formation of defined transmembrane channels by the hemolysin.  相似文献   

8.
9.
10.
The dinI homolog of S. marcescens was cloned from a plasmid library by virtue of its ability to inhibit nuclease expression from the S. marcescens nucA gene integrated in the genome of E. coli. The S. marcescens DinI protein is 68% identical to DinI of E. coli. It has a similar effect on other SOS regulated genes and likely exerts it effect on nuclease expression, which is most pronounced as the cells entered stationary phase, through inhibition of basal SOS expression. Received: 12 April 2001 / Accepted: 14 May 2001  相似文献   

11.
Summary Ribosomal protein compositions of Serratia marcescens and Escherichia coli K12 were analyzed by using carboxymethyl cellulose column chromatography. Nine 50S and nine 30S ribosomal proteins of E. coli K12 could be distinguished from those of S. marcescens on the chromatogram.Episomes of E. coli K12, which cover the streptomycin(str) region of the chromosome, were transferred to S. marcescens. Chromatographic analyses were made on the ribosomal proteins extracted from these hybrid strains. At least nine 30S and six 50S ribosomal proteins of E. coli-type could be detected in the ribosomes of the hybrid strains in addition to the ribosomal proteins of S. marcescens.  相似文献   

12.
The aspartate transcarbamoylases (ATCase, EC 2.1.3.2) of Escherichia coli and Serratia marcescens have similar dodecameric enzyme structures (2(c3):3(r2] but differ in both regulatory and catalytic characteristics. The catalytic cistrons (pyrB) of the ATCases from E. coli and S. marcescens encode polypeptides of 311 and 306 amino acids, respectively; there is a 76% identity between the DNA sequences and an overall amino acid homology of 88% (38 differences). The regulatory cistrons (pyrI) of these ATCases encode polypeptides of 153 and 154 amino acids, respectively, and there is a 75% identity between the DNA sequences and an overall amino acid homology of 77% (36 differences). In both species, the two genes are arranged as a bicistronic operon, with pyrB promoter proximal. A comparison of the deduced amino acid sequences reveals that the active site and the allosteric binding sites, as well as most of the intrasubunit interactions and intersubunit associations, are conserved in the E. coli and the S. marcescens enzymes; however, there are specific differences which undoubtedly contribute to the catalytic and regulatory differences between the enzymes of the two species. These differences include residues that have been implicated in the T-R transition, c1:r1 interface interactions, and the CTP binding site. A hybrid ATCase assembled in vivo with catalytic subunits from E. coli and regulatory subunits from S. marcescens has a 6 mM requirement for aspartate at half-maximal saturation, similar to the 5.5 mM aspartate requirement of the native E. coli holoenzyme at half-maximal saturation. However, the heterotropic response of this hybrid enzyme is characteristic of the heterotropic response of the native S. marcescens holoenzyme: ATP activation and CTP activation. Activation by both allosteric effectors indicates that the heterotropic response of this hybrid holoenzyme (Cec:Rsm) is determined by the associated S. marcescens regulatory subunits.  相似文献   

13.
T K Ball  Y Suh    M J Benedik 《Nucleic acids research》1992,20(19):4971-4974
The role of the two disulfide bonds found in the Serratia marcescens nuclease were tested by site directed mutagenesis and were found essential for nuclease activity, although slight residual activity remained. The requirement for disulfide bond formation may play a role in preventing the lethal action of nuclease while in the bacterial cytoplasm.  相似文献   

14.
Serratia marcescens produces an abundant extracellular metalloprotease. The gene for this protease had previously been cloned and expressed in Escherichia coli, in which no functional protease could be found. However, the protease gene carries the LXGGXGND repeat motif found in alpha-hemolysin and other proteins secreted by homologous systems. Using a dual-plasmid complementation system, we show that the alpha-hemolysin hlyB and hlyD transport determinants are sufficient to allow secretion and activation of a functional metalloprotease species from E. coli, as are the comparable protease secretion functions of Erwinia chrysanthemi. However, strains expressing protease with the hlyBD transport system are unstable and rapidly lose the ability to produce functional protease.  相似文献   

15.
A DNA fragment of Serratia marcescens directing an extracellular serine protease (Mr, 41,000) was cloned in Escherichia coli. The cloned fragment caused specific excretion of the protease into the extracellular medium through the outer membrane of E. coli host cells in parallel with their growth. No excretion of the periplasmic enzymes of host cells occurred. The cloned fragment contained a single open reading frame of 3,135 base pairs coding a protein of 1,045 amino acids (Mr 112,000). Comparison of the 5' nucleotide sequence with the N-terminal amino acid sequence of the protease indicated the presence of a typical signal sequence. The C-terminal amino acid of the enzyme was found at position 408, as deduced from the nucleotide sequence. Artificial frameshift mutations introduced into the coding sequence for the assumed distal polypeptide after the C terminus of the protease caused complete loss of the enzyme production. It was concluded that the Serratia serine protease is produced as a 112-kilodalton proenzyme and that its N-terminal signal peptide and a large C-terminal part are processed to cause excretion of the mature protease through the outer membrane of E. coli cells.  相似文献   

16.
17.
Using CD spectroscopic and kinetic analysis, a refined mechanism of Co(NH3) 6 3+ action on activity of Serratia marcescens nuclease was elucidated. The mechanism was identical with previously found mechanisms of Mg2+ and C7H5O2Hg+. Similarly to Mg2+ and C7H5O2Hg+, Co(NH3) 6 3+ binding to the DNA substrate induced changes in the secondary structure which resulted in changes of the enzymatic activity of the S. marcescens nuclease. Upon binding of 0.03 Co(NH3) 6 3+ per DNA phosphate, highly polymerized DNA displayed A-form characteristics. The DNA transition from B-form to A-form intermediate was followed by a decrease of the nuclease activity. The diminishing nuclease activity was consistent with diminishing values of Km and Kcat. Co(NH3)6 3+ binding to the highly polymerized DNA caused a 1.7–2.8-fold decrease in Km, and 13.3–19.9 decrease in Vmax compared with Mg-DNA complex. A vast excess of Co(NH3)6 3+ did not affect the activity of S. marcescens nuclease if the DNA in the assay mixture remained in its B-form conformation. Preincubation of S. marcescens nuclease with Co(NH3)6 3+ did not influence the tertiary structure of the enzyme.  相似文献   

18.
Dried Serratia marcescens ATTC 14014 and Escherichia coli ATTC 4157 cells were exposed to various partial pressures of purified water vapor. The colony-forming ability of the S. marcescens was unimpaired when the dried organisms were stored in water-vapor atmosphere such that P/P0 < 0.55 or P/P0 = 1.0 (where P is the pressure of the water vapor in contact with the organisms, and P0 is vapor pressure of pure water at 25 C). During storage under water-vapor atmospheres with P/P0 between 0.6 and 1.0, the colony-forming ability of the dried S. marcescens was destroyed. The inactivation by water vapor followed the expression — ln N/N0 = Kt1/2, where N0 and N are the number of viable organisms before and after exposure, respectively, t is time, and K is a pseudo constant which is dependent upon the partial pressure of the water vapor at 25 C. Similar results were obtained with dried E. coli. The addition of solutes to the suspending media before freeze-drying was found to influence the stability of the organisms during exposure to water vapor.  相似文献   

19.
20.
The Serratia marcescens serine protease (SSP) is one of the extracellular enzymes secreted from this Gram-negative bacterium. When the ssp gene, which encodes a SSP precursor (preproSSP) composed of a typical NH2-terminal signal peptide, a mature enzyme domain, and a large COOH-terminal pro-region, is expressed in Escherichia coli, the mature protease is excreted through the outer membrane into the medium. The COOH-terminal pro-region, which is integrated into the outer membrane, provides the essential function for the export of the mature protein across the outer membrane. This is a very simple pathway, in contrast to the general secretory pathway exemplified by the secretion of a pullulanase from Klebsiella oxytoca, in which many separately encoded accessory proteins are required for the transport through the outer membrane. Moreover, the NH2-terminal region of 71 amino acid residues of the COOH-terminal pro-sequence plays an essential role, as an “intramolecular chaperone,” in the folding of the mature enzyme in the medium. In addition to ssp, the S. marcescens strain contains two ssp homologues encoding proteins similar to SSP in amino acid sequence and size, but with no protease activity. Characterization of the homologue proteins and chimeric proteins between the homologues and SSP, all of which are produced in E. coli, has shown that they are membrane proteins that are localized in the outer membrane in the same manner as for SSP. By use of the COOH-terminal domain of SSP, pseudoazurin was exported to the cell surface of E. coli, which proves the usefulness of the SSP secretory system in the export of foreign proteins across the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号