共查询到20条相似文献,搜索用时 0 毫秒
1.
Shintani M Tada M Kobayashi T Kajiho H Kontani K Katada T 《Biochemical and biophysical research communications》2007,357(3):661-667
Rab-family GTPases function as key regulators for membrane traffic. Among them, Rab45/RASEF is an atypical GTPase in that it contains a coiled-coil motif at the mid region and a distinct N-terminal EF-hand domain with C-terminal Rab-homology domain. Here, we provide the initial biochemical characterization and intracellular localization of human Rab45. Rab45 bound guanine nucleotide tri- and di-phosphates through the C-terminal Rab domain. Rab45 was capable of self-interacting, and the self-interaction required the mid region containing the coiled-coil motif. Rab45 expressed in HeLa cells was localized in a small patch in the perinuclear area of the cell, and the localization was regulated by the guanine nucleotide-bound states of Rab45. Interestingly, the mid region, together with Rab domain, appeared to be essential for the characteristic perinuclear localization of Rab45, indicating that the self-interaction may be involved in the intracellular localization of Rab45. 相似文献
2.
3.
4.
Giantin interacts with both the small GTPase Rab6 and Rab1 总被引:1,自引:0,他引:1
The interaction of small GTPases of the Rab family and coiled coil proteins of the golgin family has been reported for example for the Rab1 GTPase and p115, GM130 and Giantin. We now show that Rab6A, a GTPase that controls retrograde trafficking within the Golgi back to the endoplasmic reticulum is also able to bind to Giantin in vivo and in vitro pointing to an interesting complex formation between Giantin and two different Rab GTPases. In Saccharomyces cerevisiae a genetic interaction between Ypt1 and Ypt6 has already been demonstrated, but in this paper we were able to describe that the mammalian Rab GTPases are able to interact on the same golgin protein, Giantin. 相似文献
5.
The gene CLPT1 (Colletotrichum lindemuthianum Protein Transport 1) encoding a Rab/GTPase was isolated from the filamentous fungus Colletotrichum lindemuthianum, the causal agent of bean anthracnose. At the amino acid level, CLPT1 shows between 54 and 80% identity to SEC4-like proteins, a class of molecules required for intracellular vesicular transport in yeasts. In particular, typical SEC4 domains involved in nucleotide binding and membrane attachment are present in the CLPT1 sequence. Functional identity of CLPT1 with SEC4 was confirmed by complementation of the Saccharomyces cerevisiae sec4-8 mutation. This is the first report of a gene involved in the control of intracellular vesicular trafficking in a phytopathogenic fungus. RNA blot analyses of CLPT1 expression were performed during in vitro growth of the fungus on synthetic media containing glucose or pectin, as single carbon source. The accumulation of CLPT1 mRNA was strongly increased on pectin, a plant cell wall polysaccharide that induces the production of extracellular pectinases, whereas the level of CLPT1 mRNA was below the detection threshold on glucose. These results suggest that CLPT1 is mainly involved in protein secretion and that the production of extracellular enzymes potentially involved in pathogenesis in filamentous fungi is sustained by induction of the genes involved in the secretory machinery. 相似文献
6.
Kota Saito Jun Murai Hiroaki Kajiho Kenji Kontani Hiroshi Kurosu Toshiaki Katada 《The Journal of biological chemistry》2002,277(5):3412-3418
The small GTPase Rab family, which cycles between GTP-bound active and GDP-bound inactive states, plays an important role in membrane trafficking. Among them, Rab5 is involved in early endocytic pathway, and several Rab5-binding proteins have been identified as regulators or effectors to coordinate the docking and fusion processes of endocytic vesicles. We describe a novel binding protein exhibiting unique biochemical properties for Rab5. The Rab5-binding protein enhances GDP-GTP exchange reaction on Rab5 but preferentially interacts with its GTP-bound form. Gel filtration and immunoprecipitation analyses indicate that the Rab5-binding protein functions as a tetramer composed of anti-parallel linkage of two parallel dimers. These results suggest that the newly identified protein may function as an upstream activator and/or downstream effector for Rab5 in endocytic pathway. Possible roles of the quaternary structure have been discussed in terms of the Rab5-mediated signaling. 相似文献
7.
Osanai K Takahashi K Nakamura K Takahashi M Ishigaki M Sakuma T Toga H Suzuki T Voelker DR 《Biological chemistry》2005,386(2):143-153
Rab38 is a new member of the Rab small G protein family that regulates intracellular vesicle trafficking. Rab38 is expressed in melanocytes and it has been clarified that a point mutation in the postulated GTP-binding domain of Rab38 is the gene responsible for oculocutaneous albinism in chocolate mice. However, basic information regarding recombinant protein production, intracellular location, and tissue-specific expression pattern has not yet been reported. We produced recombinant Rab38 using a baculovirus/insect cell-protein expression system. A combination of Triton X-114 phase separation and nickel-affinity chromatography yielded exclusively prenylated Rab38 that bound [alpha-32P]-GTP. The mRNA and the native protein were expressed in a tissue-specific manner, e.g., in the lung, skin, stomach, liver, and kidney. Freshly isolated rat alveolar type II cells were highly positive for the mRNA signal, but the signal was rapidly lost over time. Immunofluorescence staining demonstrated that expressed GST-tagged Rab38 was mainly co-localized with endoplasmic reticulum-resident protein and also partly with intermittent vesicles between the endoplasmic reticulum and the Golgi complex. These results indicate that Rab38 is expressed non-ubiquitously in specific tissues and regulates early vesicle transport relating to the endoplasmic reticulum, and hence suggest that Rab38 abnormality may cause multiple organ diseases as well as oculocutaneous albinism. 相似文献
8.
Leung KF Baron R Ali BR Magee AI Seabra MC 《The Journal of biological chemistry》2007,282(2):1487-1497
Post-translational modification by protein prenylation is required for membrane targeting and biological function of monomeric GTPases. Ras and Rho proteins possess a C-terminal CAAX motif (C is cysteine, A is usually an aliphatic residue, and X is any amino acid), in which the cysteine is prenylated, followed by proteolytic cleavage of the AAX peptide and carboxyl methylation by the Rce1 CAAX protease and Icmt methyltransferase, respectively. Rab GTPases usually undergo double geranylgeranylation within CC or CXC motifs. However, very little is known about processing and membrane targeting of Rabs that naturally contain a CAAX motif. We show here that a variety of Rab-CAAX proteins undergo carboxyl methylation, both in vitro and in vivo, with one exception. Rab38(CAKS) is not methylated in vivo, presumably because of the inhibitory action of the lysine residue within the AAX motif for cleavage by Rce1. Unlike farnesylated Ras proteins, we observed no targeting defects of overexpressed Rab-CAAX proteins in cells deficient in Rce1 or Icmt, as reported for geranylgeranylated Rho proteins. However, endogenous geranylgeranylated non-methylated Rab-CAAX and Rab-CXC proteins were significantly redistributed to the cytosol at steady-state levels and redistribution correlates with higher affinity of RabGDI for non-methylated Rabs in Icmt-deficient cells. Our data suggest a role for methylation in Rab function by regulating the cycle of Rab membrane recruitment and retrieval. Our findings also imply that those Rabs that undergo post-prenylation processing follow an indirect targeting pathway requiring initial endoplasmic reticulum membrane association prior to specific organelle targeting. 相似文献
9.
Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea 总被引:3,自引:0,他引:3
Sanchez-Amat A Lucas-Elío P Fernández E García-Borrón JC Solano F 《Biochimica et biophysica acta》2001,1547(1):104-116
Marinomonas mediterranea is a recently isolated melanogenic marine bacterium containing laccase and tyrosinase activities. These activities are due to the expression of two polyphenol oxidases (PPOs), a blue multicopper laccase and an SDS-activated tyrosinase. The gene encoding the first one, herein denominated M. mediterranea PpoA, has been isolated by transposon mutagenesis, cloned and expressed in Escherichia coli. Its predicted amino acid sequence shows the existence of a signal peptide and four copper-binding sites characteristic of the blue multicopper proteins, including all fungal laccases. In addition, two additional putative copper-binding sites near its N-terminus are also present. Recombinant expression in E. coli of this protein clearly demonstrates its multipotent capability, showing both laccase-like and tyrosinase-like activities. This is the first prokaryotic laccase sequenced and the first PPO showing such multipotent catalytic activity. The expression of several truncated products indicates that the four copper-binding sites typical of blue multicopper proteins are essential for the laccase activity of this enzyme. However, the last two of these sites are not necessary for tyrosine hydroxylase activity as this activity is retained in a truncated product containing the first two sites as well as the extra histidine-rich clusters close to the N-terminus of the protein. 相似文献
10.
Rab7, a member of the Rab family small G proteins, has been shown to regulate intracellular vesicle traffic to late endosome/lysosome and lysosome biogenesis, but the exact roles of Rab7 are still undetermined. Accumulating evidence suggests that each Rab protein has multiple target proteins that function in the exocytic/endocytic pathway. We have isolated a new Rab7 target protein, Rabring7 (Rab7-interacting RING finger protein), using a CytoTrap system. It contains an H2 type RING finger motif at the C termini. Rabring7 shows no homology with RILP, which has been reported as another Rab7 target protein. GST pull-down and coimmunoprecipitation assays demonstrate that Rabring7 specifically binds the GTP-bound form of Rab7 at the N-terminal portion. Rabring7 is found mainly in the cytosol and is recruited efficiently to late endosomes/lysosomes by the GTP-bound form of Rab7 in BHK cells. Overexpression of Rabring7 not only affects epidermal growth factor degradation but also causes the perinuclear aggregation of lysosomes, in which the accumulation of the acidotropic probe LysoTracker is remarkably enhanced. These results suggest that Rabring7 plays crucial roles as a Rab7 target protein in vesicle traffic to late endosome/lysosome and lysosome biogenesis. 相似文献
11.
B Honoré H Leffers P Madsen H H Rasmussen J Vandekerckhove J E Celis 《The Journal of biological chemistry》1992,267(12):8485-8491
A transformation-sensitive human protein (IEF SSP 3521) that is 2-fold up-regulated in SV40-transformed MRC-5 fibroblasts has been purified by two-dimensional gel electrophoresis, microsequenced, and cDNA cloned using oligodeoxyribonucleotides. The 2.1-kilobase cDNA encodes a 543-amino acid protein with a calculated molecular mass of 62.6 kDa and a calculated pI of 6.77. Expression of the cDNA in AMA cells using the vaccinia virus expression system followed by two-dimensional gel electrophoresis showed that the protein comigrated with IEF SSP 3521. The protein contains the tetratricopeptide repeat found in families of fungal proteins required for mitosis and RNA synthesis. In particular, the protein has 42% amino acid sequence identity to STI1, a stress-inducible mediator of the heat shock response in Saccharomyces cerevisiae. Northern blot analysis indicated that the 3521 mRNA is up-regulated in several transformed cells. Immunofluorescence studies using a polyclonal antibody raised against the purified protein revealed that the antigen is present mainly in the nucleus of SV40 transformed MRC-5 fibroblasts, while it localizes to the Golgi apparatus and small vesicles in their normal counterparts. The possible physiological role of IEF SSP 3521 is discussed in the light of the structural relationship with STI1. 相似文献
12.
Increased spread of HIV-1 and rapid emergence of drug resistance warrants development of novel antiviral strategies. Nef, a critical viral pathogenicity factor that interacts with host cell factors but lacks enzymatic activity, is not targeted by current antiviral measures. Here we inhibit Nef function by simultaneously blocking several highly conserved protein interaction surfaces. This strategy, referred to as "wrapping Nef", is based on structure-function analyses that led to the identification of four target sites: (i) SH3 domain interaction, (ii) interference with protein transport processes, (iii) CD4 binding and (iv) targeting to lipid membranes. Screening combinations of Nef-interacting domains, we developed a series of small Nef interacting proteins (NIs) composed of an SH3 domain optimized for binding to Nef, fused to a sequence motif of the CD4 cytoplasmic tail and combined with a prenylation signal for membrane association. NIs bind to Nef in the low nM affinity range, associate with Nef in human cells and specifically interfere with key biological activities of Nef. Structure determination of the Nef-inhibitor complex reveals the molecular basis for binding specificity. These results establish Nef-NI interfaces as promising leads for the development of potent Nef inhibitors. 相似文献
13.
Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1 总被引:29,自引:0,他引:29
B Rubinfeld S Munemitsu R Clark L Conroy K Watt W J Crosier F McCormick P Polakis 《Cell》1991,65(6):1033-1042
The rap1/Krev-1 gene encodes a ras-related protein that suppresses transformation by ras oncogenes. We have purified an 88 kd GTPase activating protein (GAP), specific for the rap1/Krev-1 gene product, from bovine brain. Based on partial amino acid sequences obtained from this protein, a 3.3 kb cDNA was isolated from a human brain library. Expression of the cDNA in insect Sf9 cells resulted in high level production of an 85-95 kd rap1GAP that specifically stimulated the GTPase activity of p21rap1. The complete deduced amino acid sequence is not homologous to any known protein sequences, including GAPs specific for p21ras. Northern and Western blotting analysis indicate that rap1GAP is not ubiquitously expressed and appears most abundant in fetal tissues and certain tumor cell lines, particularly the Wilms' kidney tumor, SK-NEP-1, and the melanoma, SK-MEL-3, cell lines. 相似文献
14.
Using a polyclonal antiserum a cDNA encoding a Rab escort protein (REP) homolog in Drosophila has been identified and sequenced. The gene encodes a 511 residue protein with a predicted molecular mass of 56855 Da. Antibody labeling demonstrates that Drosophila REP protein is present in the early embryo and that it is being apportioned uniformly throughout the embryo in a process likely to be linked to the syncytial nuclear divisions. In situ hybridization to polytene chromosomes reveals that the Drosophila REP gene is located in the 56E region on the second chromosome. Drosophila REP is the first invertebrate REP homolog to be identified and characterized. 相似文献
15.
We report the synthesis of a sulfated pentasaccharide containing the Lewis(x) motif used for an NMR study described in Carbohydr. Res. 2003, 338, this issue, see following communication: doi:10.1016/S0008-6215(03)00243-X, using the dibutylstannylene acetal methodology. 相似文献
16.
Furuta B Harada A Kobayashi Y Takeuchi K Kobayashi T Umeda M 《Journal of neurochemistry》2002,82(5):1018-1028
Nadrin is a GTPase-activating protein (GAP) for the rho family of GTPases that controls Ca2+-dependent exocytosis in nerve endings. In this study, three novel splice variants of nadrin were identified and the variants were designated as nadrin-102, -104, -116 and -126 according to their relative molecular masses. All nadrin variants share the GAP domain, coiled-coil domain, serine/threonine/proline-rich domain, SH3-binding motif, and a successive repeat of 29 glutamines. Tissue distribution analyses using polyclonal antibodies that can discriminate each variant showed that the expression of nadrin-102, -104 and -116 was dominant in neuronal tissues and correlates well with the differentiation of neurons while nadrin-126 was strongly expressed in embryonic brain. Expression of nadrin-116 in PC12 cells strongly inhibited NGF-dependent neurite outgrowth and this effect was dependent on its GAP activity. In contrast, no significant effect on either cell morphology or neurite outgrowth was observed with other variants. All variants showed punctate appearance throughout the cytoplasm, while the 66-kDa carboxyl-terminal fragment of nadrin-102 and/or nadrin-116 was localized to the nucleus and its nuclear translocation was accelerated by NGF-induced differentiation of the cells. These results suggested that nadrin variants are different in their ability to regulate rho-mediated signaling and that, in addition to being a GTPase-activating protein, nadrin-102 and -116 have other distinct functions in the nucleus of the cell, implying a possible role in the cross-talk between the cytoskeleton and the nucleus. 相似文献
17.
18.
A novel sucrose hydrolase (SUH) from Xanthomonas axonopodis pv. glycines, a causative agent of bacterial pustule disease on soybeans, was studied at the functional and molecular levels. SUH was shown to act rather specifically on sucrose (K(m) = 2.5 mM) but not on sucrose-6-phosphate. Protein analysis of purified SUH revealed that, in this monomeric enzyme with an estimated molecular mass of 70,223 +/- 12 Da, amino acid sequences determined for several segments have corresponding nucleotide sequences in XAC3490, a protein-coding gene found in the genome of X. axonopodis pv. citri. Based on this information, the SUH gene, consisting of an open reading frame of 1,935 bp, was cloned by screening a genomic library of X. axonopodis pv. glycines 8ra. Database searches and sequence comparison revealed that SUH has significant homology to some family 13 enzymes, with all of the crucial invariant residues involved in the catalytic mechanism conserved, but it shows no similarity to known invertases belonging to family 32. suh expression in X. axonopodis pv. glycines requires sucrose induction, and insertional mutagenesis resulted in an absence of sucrose-inducible sucrose hydrolase activity in crude protein extracts and a sucrose-negative phenotype. Recombinant SUH, overproduced in Escherichia coli and purified, was shown to have the same enzymatic characteristics in terms of kinetic parameters. 相似文献
19.
Meenakshi Rana Jens Lachmann Christian Ungermann 《Molecular biology of the cell》2015,26(13):2535-2549
Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions. 相似文献