首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Porphyromonas gingivalis (P. gingivalis) is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. P. gingivalis or its components such as lipopolysaccharide (LPS) upregulate the production of various inflammatory cytokines including interleukin (IL)-1 and IL-6 in HGFs. Recently, we demonstrated that the binding of P. gingivalis LPS to Toll-like receptor 4 (TLR4) on HGFs activates various second messenger systems (Biochem. Biophys. Res. Commun. 273, 1161-1167, 2000). In the present study, we examined the level of TLR4 expression on HGFs by flow cytometric analysis (FACS), and studied the levels of IL-1 and IL-6 in the culture medium upon LPS stimulation of HGFs by enzyme-linked immunosorbent assay (ELISA). Upon stimulation by P. gingivalis LPS for 24 h, HGFs that expressed a high level of TLR4 secreted significantly higher levels of IL-1 and IL-6 than HGFs that expressed a low level of TLR4. On the other hand, after stimulation with P. gingivalis LPS for 24 h, the level of TLR4 on the surface of HGFs decreased. These results suggest that the level of TLR4 expression on HGFs reflects the extent of inflammation in the gingival tissue, and that P. gingivalis LPS downregulates TLR4 expression on HGFs. These findings may be used to control inflammatory and immune responses in periodontal disease.  相似文献   

2.
We investigated the expression of a panel of Toll-like receptors (TLRs) and their functions in human eosinophils. Eosinophils constitutively expressed TLR1, TLR4, TLR7, TLR9, and TLR10 mRNAs (TLR4 greater than TLR1, TLR7, TLR9, and TLR10 greater than TLR6). In contrast, neutrophils expressed a larger variety of TLR mRNAs (TLR1, TLR2, TLR4, TLR6, TLR8 greater than TLR5, TLR9, and TLR10 greater than TLR7). Although the expression levels in eosinophils were generally less prominent compared with those in neutrophils, eosinophils expressed a higher level of TLR7. Furthermore, among various TLR ligands (S-(2,3-bis(palmitoyloxy)-(2-RS)-propyl)-N-palmitoyl-Cys-Ser-(Lys)(4), poly(I:C), LPS, R-848, and CpG DNA), only R-848, a ligand of TLR7 and TLR8, regulated adhesion molecule (CD11b and L-selectin) expression, prolonged survival, and induced superoxide generation in eosinophils. Stimulation of eosinophils by R-848 led to p38 mitogen-activated protein kinase activation, and SB203580, a p38 mitogen-activated protein kinase inhibitor, almost completely attenuated R-848-induced superoxide generation. Although TLR8 mRNA expression was hardly detectable in freshly isolated eosinophils, mRNA expression of TLR8 as well as TLR7 was exclusively up-regulated by IFN-gamma but not by either IL-4 or IL-5. The up-regulation of the TLRs by IFN-gamma had potentially functional significance: the extent of R-848-induced modulation of adhesion molecule expression was significantly greater in cells treated with IFN-gamma compared with untreated cells. Although the natural ligands for TLR7 and TLR8 have not yet been identified, our results suggest that eosinophil TLR7/8 systems represent a potentially important mechanism of a host-defensive role against viral infection and mechanism linking exacerbation of allergic inflammation and viral infection.  相似文献   

3.
B lymphocytes express multiple TLRs that regulate their cytokine production. We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF‐κB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand Escherichia coli LPS and/or TLR9 ligand CpG‐oligodeoxynucleotide (CpG‐ODN) for 2 days. RANKL mRNA expression and the percentage of RANKL‐positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. The increases were less pronounced when cells were treated with both CpG‐ODN and E. coli LPS. Microarray analysis showed that expressions of multiple cyclin‐dependent kinase (CDK) pathway‐related genes were up‐regulated only in cells treated with both E. coli LPS and CpG‐ODN. This study suggests that CpG‐ODN inhibits LPS‐induced RANKL expression in rat B cells via regulation of the CDK pathway.  相似文献   

4.
5.
TLRs are involved in innate cell activation by conserved structures expressed by microorganisms. Human T cells express the mRNA encoding most of TLRs. Therefore, we tested whether some TLR ligands may modulate the function of highly purified human CD4+ T lymphocytes. We report that, in the absence of APCs, flagellin (a TLR5 ligand) and R-848 (a TLR7/8 ligand) synergized with suboptimal concentrations of TCR-dependent (anti-CD3 mAb) or -independent stimuli (anti-CD2 mAbs or IL-2) to up-regulate proliferation and IFN-gamma, IL-8, and IL-10 but not IL-4 production by human CD4+ T cells. No effect of poly(I:C) and LPS, ligands for TLR3 and TLR4, respectively, was detected. We also observed that CD4+CD45RO+ memory T cell responses to TLR ligands were more potent than those observed with CD4+CD45RA+ naive T cells. Moreover, among the memory T cells, CCR7- effector cells were more sensitive to TLR ligands than CCR7+ central memory cells. These data demonstrate for the first time a direct effect of TLR5 and TLR7/8 ligands on human T cells, and highlight an innate arm in T cell functions. They also suggest that some components from invading microorganisms may directly stimulate effector memory T cells located in tissues by up-regulating cytokine and chemokine production.  相似文献   

6.
The lipopolysaccharide (LPS) secreted by Porphyromonas gingivalis is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. In this study, we examined the expression of Toll-like receptor 4 (TLR4) on HGFs by flow cytometric analysis, and studied the signal transduction induced by LPS stimulation of HGFs by enzyme-linked immunosorbent assay, Western blotting, and immunoprecipitation. We show that LPS binds to HGFs, and that HGFs express TLR4 and myeloid differentiation primary response gene 88 (MyD88). P. gingivalis LPS-induced interleukin (IL)-1 production in HGFs was inhibited by anti-TLR4 antibody. P. gingivalis LPS treatment of HGFs activated several intracellular proteins including protein tyrosine kinases, and upregulated the expression of IL-1 receptor-associated kinase (IRAK), nuclear factor-kappaB (NF-kappaB), and activating protein-1 (AP-1), and these events were suppressed by anti-TLR4 monoclonal antibody. Our findings suggest that the binding of P. gingivalis LPS to TLR4 on HGFs activates various second messenger systems.  相似文献   

7.
Toll-like receptors (TLRs) are critical for the recognition of inhaled pathogens that deposit on the airway epithelial surface. The epithelial response to pathogens includes signaling cascades that activate the EGF receptor (EGFR). We hypothesized that TLRs communicate with EGFR via epithelial signaling to produce certain innate immune responses. Airway epithelium expresses the highest levels of TLR2, TLR3, TLR5, and TLR6, and here we found that ligands for these TLRs increased IL-8 and VEGF production in normal human bronchial epithelial cells. These effects were prevented by treatment with a selective inhibitor of EGFR phosphorylation (AG-1478), a metalloprotease (MP) inhibitor, a reactive oxygen species (ROS) scavenger, and an NADPH oxidase inhibitor. In an airway epithelial cell line (NCI-H292), TNF-alpha-converting enzyme (TACE) small interfering RNA (siRNA) was used to confirm that TACE is the MP involved in TLR ligand-induced IL-8 and VEGF production. We show that transforming growth factor (TGF)-alpha is the EGFR ligand in this signaling cascade by using TGF-alpha neutralizing antibody and by showing that epithelial production of TGF-alpha occurs in response to TLR ligands. Dual oxidase 1 (Duox1) siRNA was used to confirm that Duox1 is the NADPH oxidase involved in TLR ligand-induced IL-8 and VEGF production. We conclude that multiple TLR ligands induce airway epithelial cell production of IL-8 and VEGF via a Duox1--> ROS--> TACE--> TGF-alpha--> EGFR phosphorylation pathway. These results show for the first time that multiple TLRs in airway epithelial cells produce innate immune responses by activating EGFR via an epithelial cell signaling cascade.  相似文献   

8.
TLRs serve important immune and nonimmune functions in human intestinal epithelial cells (IECs). Proinflammatory Th1 cytokines have been shown to promote TLR expression and function in IECs, but the effect of key Th2 cytokines (IL-4, IL-5, IL-13) on TLR signaling in IECs has not been elucidated so far. We stimulated human model IECs with Th2 cytokines and examined TLR mRNA and protein expression by Northern blotting, RT-PCR, real-time RT-PCR, Western blotting, and flow cytometry. TLR function was determined by I-kappaBalpha phosphorylation assays, ELISA for IL-8 secretion after stimulation with TLR ligands and flow cytometry for LPS uptake. IL-4 and IL-13 significantly decreased TLR3 and TLR4 mRNA and protein expression including the requisite TLR4 coreceptor MD-2. TLR4/MD-2-mediated LPS uptake and TLR ligand-induced I-kappaBalpha phosphorylation and IL-8 secretion were significantly diminished in Th2 cytokine-primed IECs. The down-regulatory effect of Th2 cytokines on TLR expression and function in IECs also counteracted enhanced TLR signaling induced by stimulation with the hallmark Th1 cytokine IFN-gamma. In summary, Th2 cytokines appear to dampen TLR expression and function in resting and Th1 cytokine-primed human IECs. Diminished TLR function in IECs under the influence of Th2 cytokines may protect the host from excessive TLR signaling, but likely also impairs the host intestinal innate immune defense and increases IEC susceptibility to chronic inflammation in response to the intestinal microenvironment. Taken together, our data underscore the important role of Th2 cytokines in balancing TLR signaling in human IECs.  相似文献   

9.
Lipopolysaccharides (LPS) of Porphyromonas gingivalis have been implicated in the initiation and development of periodontal diseases. In a previous study, we investigated the signal transduction pathway of P. gingivalis and demonstrated that LPS stimulates the production of interleukin (IL)-6 in human gingival fibroblasts (HGFs), which in turn activates osteoclasts in vitro. The cytokine, IL-10, was initially described as cytokine synthesis inhibitory factor. In this study, we examined that effect of IL-10 on P. gingivalis LPS-induced human gingival fibroblast production of IL-6. LPS-induced IL-6 production was inhibited by IL-10 in a dose-dependent manner. Flow cytometric analysis showed that HGFs bind to fluorescein-isothiocyanate (FITC) labeled IL-10. Western blotting analysis demonstrated the expression of IL-10 receptor on the cell surface of these cells. Engagement of LPS initiated the protein tyrosine phosphorylation of several intracellular proteins including extracellular signal-regulated kinase 2 (ERK2), and these events were suppressed by IL-10. These results suggest that IL-10 inhibits the inflammatory response via the IL-10 receptor in P. gingivalis LPS-initiated periodontal diseases.  相似文献   

10.
The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.  相似文献   

11.
Recent studies have revealed that murine bone marrow-derived cultured mast cells (BMMC), which are phenotypically immature mast cells, express functional TLR2 and TLR4 that recognize distinct pathogen-associated molecules. However, it remains relatively uncertain whether mast cells express other TLR. We recently established a method to obtain large numbers of murine fetal skin-derived cultured mast cells (FSMC); these cells exhibit important features of connective tissue type mast cells. Working with FSMC and BMMC, the TLR mRNA expression profiles were compared between both cell types. Although TLR2 and TLR4 mRNA were detected in both cells at comparable levels, TLR3, TLR7, and TLR9 mRNA were expressed by FSMC at higher levels than by BMMC, suggesting distinct TLR expression profiles among different mast cell populations. With respect to their functional aspects, FSMC, but not BMMC, dose dependently produced proinflammatory cytokines (TNF-alpha and IL-6) and chemokines (RANTES, MIP-1alpha, and MIP-2) in response to poly(I:C), R-848, and CpG oligodeoxynucleotide, which are TLR3, TLR7, and TLR9 activators, respectively. Interestingly, these TLR activators failed to induce degranulation and IL-13 production by both mast cells, although peptidoglycan and LPS (TLR2 and TLR4 activators, respectively) induced IL-13 production by both cells. Mast cells, thus, may have potential to recruit other immune cells to the infected sites by responding to various bacterial and viral components through TLR signaling pathways, presumably being involved in initiating innate immunity and subsequently linking innate and acquired immune responses.  相似文献   

12.
Toll-like receptor (TLR) and interferon-gamma (IFN-gamma) signaling pathways are important for both innate and adaptive immune responses. However, the cross-talk between these two signaling pathways is incompletely understood. Here we show that IFN-gamma and LPS synergistically induce the expression of proinflammatory factors, including interleukin-1 (IL-1), IL-6, IL-12, NO, and tumor necrosis factor-alpha (TNF-alpha). Comparable synergism was observed between IFN-gamma and peptidoglycan (PGN; a TLR2 ligand) and poly(I:C) (a TLR3 ligand) in the induction of IL-12 promoter activity. IFN-gamma enhanced lipopolysaccharide (LPS)-induced ERK and JNK phosphorylation but had no effect on LPS-induced NF-kappaB activation. Interestingly, we found that IRF-8-/- macrophages were impaired in the activation of LPS-induced ERK and JNK and the production of proinflammatory cytokines induced by LPS or IFN-gamma plus LPS. Retroviral transduction of IRF-8 into IRF-8-/- macrophages rescued ERK and JNK activation. Furthermore, co-immunoprecipitation experiments show that IRF-8 physically interacts with TRAF6 at a binding site between amino acid residues 356 and 305 of IRF-8. Transfection of IRF-8 enhanced TRAF6 ubiquitination, which is consistent with a physical interaction of IRF-8 with TRAF6. Taken together, the results suggest that the interaction of IRF-8 with TRAF6 modulates TLR signaling and may contribute to the cross-talk between IFN-gamma and TLR signal pathways.  相似文献   

13.

Introduction

We previously reported that IL-29, a newly described member of interferon (IFN) family, was overexpressed in blood and synovium of rheumatoid arthritis (RA) patients and triggered proinflammatory cytokine IL-6 and IL-8 mRNA expression in RA synovial fibroblasts (RA-FLS). This suggests that IL-29 has an important role in synovial inflammation. Toll-like receptors (TLRs) also activate RA-FLS to produce inflammatory mediators including tumor necrosis factor α (TNF-α) and IL-1β in RA-FLS. Since the TLR family plays an early role in the innate immune response and the subsequent induction of the adaptive immune response, we hypothesize that IL-29 interacts with TLRs in RA inflammation. This study aimed to investigate the effect of IL-29 on TLR-mediated proinflammatory cytokine production in RA-FLS.

Methods

The mRNA level of IL-29 receptors (IL-28Rα and IL-10R2) in RA-FLS was determined by semi-quantitative RT- PCR. IL-6 and IL-8 mRNA expressions in RA-FLS were evaluated by real-time PCR after pre-incubation with IL-29 and subsequent stimulation with peptidoglycan (PGN, TLR2 ligand), or polycytidylic acid (poly(I:C), TLR3 ligand), or lipopolysaccharide (LPS, TLR4 ligand) . The production of TLR2, 3, and 4 in RA-FLS after IL-29 stimulation was also assessed by real-time PCR and flow cytometry. IL-29 mRNA and protein expression in RA-FLS after stimulation with PGN, poly(I:C), or LPS were measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively.

Results

The IL-29 receptor complex (IL-28Rα and IL-10R2) was identified in RA-FLS. IL-29 enhanced TLR-mediated IL-6 and IL-8 expression in RA-FLS. IL-29 upregulated expression of TLR2, 3 and 4 in RA-FLS. Exposure to PGN, poly(I:C) or LPS triggered IL-29 production by RA-FLS.

Conclusions

We show for the first time that IL-29 enhances TLR-induced proinflammatory cytokine production in RA-FLS via upregulation of TLRs.  相似文献   

14.
The Toll-like receptors (TLRs) play a pivotal role in innate immunity for the detection of highly conserved, pathogen-expressed molecules. Previously, we demonstrated that lipopolysaccharide (LPS, TLR4 ligand)-increased macrophage motility required the participation of Src and FAK, which was inducible nitric oxide synthase (iNOS)-dependent. To investigate whether this iNOS/Src/FAK pathway is a general mechanism for macrophages to mobilize in response to engagement of TLRs other than TLR4, peptidoglycan (PGN, TLR2 ligand), polyinosinic-polycytidylic acid (polyI:C, TLR3 ligand) and CpG-oligodeoxynucleotides (CpG, TLR9 ligand) were used to treat macrophages in this study. Like LPS stimulation, simultaneous increase of cell motility and Src (but not Fgr, Hck, and Lyn) was detected in RAW264.7, peritoneal macrophages, and bone marrow-derived macrophages exposed to PGN, polyI:C and CpG. Attenuation of Src suppressed PGN-, polyI:C-, and CpG-elicited movement and the level of FAK Pi-Tyr861, which could be reversed by the reintroduction of siRNA-resistant Src. Besides, knockdown of FAK reduced the mobility of macrophages stimulated with anyone of these TLR ligands. Remarkably, PGN-, polyI:C-, and CpG-induced Src expression, FAK Pi-Tyr861, and cell mobility were inhibited in macrophages devoid of iNOS, indicating the importance of iNOS. These findings corroborate that iNOS/Src/FAK axis occupies a central role in macrophage locomotion in response to engagement of TLRs.  相似文献   

15.
In the inflammatory gingival tissues of patients with periodontitis, cytokines such as interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha have been detected. Gingival fibroblasts are the major constituents of gingival tissue. We recently demonstrated that lipopolysaccharide (LPS) from periodontopathic bacteria induces inflammatory reactions in various tissues via CD14 and/or Toll-like receptors (TLRs) in gingival tissues [Biochem. Biophys. Res. Commun. 273 (2000) 1161]. To confirm this, we examined the expression of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF-alpha, CD14, TLR2, and TLR4 in human gingival fibroblasts (HGFs) obtained from patients with healthy or inflammatory gingiva using DNA microarray analysis. We also studied the expression levels of these proteins by flow cytometric analysis (FACS). The expression levels of all eight genes in the HGFs of the Inflammatory group were significantly higher than those in the Healthy group on DNA microarray analysis. FACS revealed that the expression levels of all eight proteins on the HGFs of the Inflammatory group were higher than those on the Healthy group. Our data indicated that these eight proteins in HGFs are involved in inflammatory conditions in the gingiva, including periodontal disease. Our results suggested that these eight proteins, in turn, act directly or indirectly on the immune response by activating host cells involved in inflammatory processes.  相似文献   

16.
Toll-like receptors (TLRs) are a family of mammalian homologues of Drosophila Toll and play important roles in host defense. Two of the TLRs, TLR2 and TLR4, mediate the responsiveness to LPS. Here the gene expression of TLR2 and TLR4 was analyzed in mouse macrophages. Mouse splenic macrophages responded to an intraperitoneal injection or in vitro treatment of LPS by increased gene expression of TLR2, but not TLR4. Treatment of a mouse macrophage cell line with LPS, synthetic lipid A, IL-2, IL-15, IL-1beta, IFN-gamma, or TNF-alpha significantly increased TLR2 mRNA expression, whereas TLR4 mRNA expression remained constant. TLR2 mRNA increase in response to synthetic lipid A was severely impaired in splenic macrophages isolated from TLR4-mutated C3H/HeJ mice, suggesting that TLR4 plays an essential role in the process. Specific inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase and p38 kinase did not significantly inhibit TLR2 mRNA up-regulation by LPS. In contrast, LPS-mediated TLR2 mRNA induction was abrogated by pretreatment with a high concentration of curcumin, suggesting that NF-kappaB activation may be essential for the process. Taken together, our results indicate that TLR2, in contrast to TLR4, can be induced in macrophages in response to bacterial infections and may accelerate the innate immunity against pathogens.  相似文献   

17.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

18.
The lipopolysaccharide (LPS) and fimbriae of Porphyromonas gingivalis play important roles in periodontal inflammation and pathogenesis. We investigated fimbriae and LPS from several P. gingivalis strains in terms of relative dependence on Toll-like receptor (TLR) signalling partners or accessory pattern-recognition molecules mediating ligand transfer to TLRs, and determined induced assembly of receptor complexes in lipid rafts. Fimbriae could utilize TLR1 or TLR6 for cooperative TLR2-dependent activation of transfected cell lines, in contrast to LPS and a mutant version of fimbriae which displayed preference for TLR1. Whether used to activate human cell lines or mouse macrophages, fimbriae exhibited strong dependence on membrane-expressed CD14 (mCD14), which could not be substituted for by soluble CD14 (sCD14). In contrast, sCD14 efficiently substituted for mCD14 in LPS-induced cellular activation. LPS-binding protein was more important for LPS- than for fimbria-induced cell activation, whereas the converse was true for CD11b/CD18. Cell activation by LPS or fimbriae required lipid raft function and formation of heterotypic receptor complexes (TLR1-2/CD14/CD11b/CD18), although wild-type fimbriae additionally recruited TLR6. In summary, TLR2 activation by P. gingivalis LPS or fimbriae involves differential dependence on accessory signalling or ligand-binding receptors, which may differentially influence innate immune responses.  相似文献   

19.
TLRs play a critical role in early innate immune response to virus infection. TLR3 together with TLR7 and TLR8 constitute a powerful system to detect genetic material of RNA viruses. TLR3 has been shown to bind viral dsRNA whereas TLR7 and TLR8 are receptors for viral single-stranded RNA. In this report we show that TLR7 or TLR8 are not expressed in human epithelial A549 cells or in HUVECs. Accordingly, A549 cells and HUVECs were unresponsive to TLR7/8 ligand R848. TLR3 was expressed at a higher level in HUVECs than in A549 cells. The TLR3 ligand poly(I:C) up-regulated IFN-beta, IL-28, IL-29, STAT1, and TLR3 expression in HUVECs but not in A549 cells. An enhanced TLR3 expression by transfection or by IFN-alpha stimulation conferred poly(I:C) responsiveness in A549 cells. Similarly, IFN-alpha pretreatment strongly enhanced poly(I:C)-induced activation of IFN-beta, IL-28, and IL-29 genes also in HUVECs. In conclusion, our results suggest that IFN-alpha-induced up-regulation of TLR3 expression is involved in dsRNA activated antiviral response in human epithelial and endothelial cells.  相似文献   

20.
Odontoblasts are the first-line defense cells against invading microorganisms. Toll-like receptors (TLRs) play a crucial role in innate immunity, and TLR9 is involved in the recognition of microbial DNA. This study aimed to investigate whether odontoblasts can respond to CpG DNA and to determine the intracellular signaling pathways triggered by CpG DNA. We found that the mouse odontoblast-like cell line MDPC-23 constitutively expressed TLR9. Exposure to CpG ODN induced a potent proinflammatory response based on an increase of IL-6 and TNF-α expression. Pretreatment with an inhibitory MyD88 peptide or a specific inhibitor for TLR9, NF-κB or IκBα markedly inhibited CpG ODN-induced IL-6 and TNF-α expression. Moreover, the CpG ODN-mediated increase of κB-luciferase activity in MDPC-23 cells was suppressed by the overexpression of dominant negative mutants of TLR9, MyD88 and IκBα, but not by the dominant negative mutant of TLR4. This result suggests a possible role for the CpG DNA-mediated immune response in odontoblasts and indicates that TLR9, MyD88 and NF-κB are involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号