首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetanic electric stimulation of Helix foot evokes sensitization of escape reaction. This behavioral sensitization and posttetanic potentiation (PTP) of acetylcholine-induced inward current (ACh-current) in command Helix neurons of escape behavior were similar. Antagonist of serotonin receptors methiothepin prevents the PTP of the ACh-current and behavioral sensitization. Serotonin disrupts the PTP of the ACh-current. It is suggested that the increase in cholinosensitivity of the command neurons with the involvement of methiothepin-sensitive serotonin receptors may be the cellular postsynaptic mechanism of behavioral sensitization of Helix escape reaction.  相似文献   

2.
Posttetanic potentiation (by orthodromic stimulation) of cholinosensitivity in LPa3 and RPa3 Helix lucorum neurons that are command in respect to withdrawal behavior was shown earlier (Pivovarov et al., 1999). Now we studied the regulatory role of the Na,K-pump and intracellular free Ga2+ in the posttetanic potentiation (PTP) of cholinosensitivity in command neurons. Semiintact Helix preparation "CNS-visceral bag" was used in experiments. Acetylcholine-induced inward currents were recorded using two-electrode voltage clamp technique. Acetylcholine was applied to somata of the identified LPa3 and RPa3 neurons with a 10-min interval before and after electrical tetanic stimulation of the n. intestinalis (10.5 mA; 0.1 s; 2/s; 2 min). Ouabain (extracellular application, 70 mcM) blocked the PTP. Intracellular injection of BAPTA (1 mM), chelator of Ca2+ ions, prevented the PTP. The PTP was absent after the ouabain application against the background of preliminary intracellular injection of BAPTA. A conclusion war drawn about Ca-dependent participation of Na,K-pump in posttetanic potentiation of cholinosensitivity in command Helix lucorum neurons of withdrawal behavior.  相似文献   

3.
We studied the role of Na/Ca-exchange and intracellular mobilized calcium in ouabain-mediated suppression of potentiation of cholinosensitivity of somatic membrane in Helix LPa3 and RPa3 command neurons of defensive behaviour after electrical orthodromic tetanisation of n. intestinalis. Cholinosensitivity of neurons was assessed by the amplitude of the inward current evoked by acetylcholine. Inhibitor of a Na/Ca-exchange benzamil and specific inhibitor of Ca-ATPase in endoplasmic reticulum thapsigargin prevented the development of the posttetanic potentiation (PTP). PTP did not arise and at joint action of ouabain with benzamil or thapsigargin. It was concluded that Na/Ca-exchange and mobilized calcium are involved in development of PTP of cholinosensitivity in somatic neuronal membrane and its regulation by Na,K-pump.  相似文献   

4.
Heterosynaptic potentiation of cholinergic excitatory postsynaptic currents and potentials evoked by electrical stimulation of visceral mass was discovered in command Helix neurons of escape reaction. The results suggest the involvement of mechanism of an increase in cholinosensitvity in postsynaptic membrane zones in potentiation of excitatory postsynaptic responses to sensory stimulation.  相似文献   

5.
Comparison of posttetanic changes of the acetylcholine-induced inward current (ACh-current) in command Helix lucorum neurones at different conditions (using stop flow of saline through the chamber with a ganglia preparation and using flow of saline) was made. Flow of saline reduces latency and degree of posttetanic increase of the ACh-current in neurones. Earlier and weak posttetanic potentiation of the ACh-current in command Helix lucorum neurones during flow of saline through the chamber with a ganglia preparation testifies to participation of the humoral factor in the mechanism of posttetanic potentiation of cholinosensitivity of somatic membrane in postsynaptic neurone.  相似文献   

6.
Toxins that impair the function of actin microfilaments in cytoskeleton, cytochalasin B (disrupts microfilaments by inhibiting actin polymerization) and phalloidin (binds polymeric F-actin, stabilizing it and interfering with the function of actin-rich structures) reduce the depression of acetylcholine-induced inward current in Helix lucorum command neurons of defensive behavior during rhythmical local acetylcholine applications to soma (cellular analogue of habituation). These results and mathematical simulation allow us to suggest that the depression of cholinosensitivity of extrasynaptic membrane zones in command neurons on the cellular analogue of habituation is associated with the involvement of actin microfilaments in reduction of the number of membrane cholinoreceptors.  相似文献   

7.
The role the Na/Ca-exchange and intracellular Ca2+ released from Ca(2+)-depots in the modulatory action of Na,K-pump inhibitor ouabain on cholinosensitivity in the command neurons of Helix lucorum was studied in a cellular analogue of habituation. The integral transmembrane inward currents in LPa2, LPa3, RPa3, and RPa2 neurons were recorded in Helix lucorum ganglia preparation using two-electrode voltage clamp technique. The reduction of cholinosensitivity of a neuron was estimated as a depth of the depression of the acetylcholine-induced inward currents during the rhythmic local acetylcholine applications (with the interstimulus interval of 2-4 min) on a somatic membrane. The inhibitor of the Na/Ca-exchange benzamil (the extracellular action, 15-35 mcM) and two specific inhibitors of Ca-ATPase in the sarcoplasmic and endoplasmic reticulum, cyclopiazonic acid and thapsigargin (intracellular injection by spontaneous diffusion, 0.1 mM) prevented the modification of the depression of acetylcholine-induced current by ouabain (100 mcM) during the rhythmic application of acetylcholine. A conclusion is drawn that the inhibitor of the Na,K-pump ouabain modifies the depression of neuron cholinosensitivity in the cellular analogue of habituation via the Na/Ca-exchange and intracellular Ca2+ released from Ca2+ depots.  相似文献   

8.
Repeated tactile stimulation of the skin evoked sensitization and subsequent habituation of a behavioral avoidance reaction of pneumostome closure in the land snail, Helix lucorum L. Spike responses in putative command neurons for avoidance behavior increased and subsequently decreased parallel to behavioral events. Decrease of spike responses in command neurons was due to decreased synaptic input evoked by repeated tactile stimulation. Intracellular investigation of the increase in the spike response in command neurons for pneumostome closure, which underlies behavioral sensitization, revealed a synpatically-evoked, long-lasting depolarization. No conductance changes during this depolarization were found, but neuronal excitability was altered.  相似文献   

9.
10.
Effects of antibody against serotonin-modulated protein SMP-69 on defence behavior command neurons L-RP11 were studied in semi-intact preparation of snail Helix lucorum. An increase in membrane excitability as well as selective facilitation of neural responses evoked with chemical sensory stimulation of the snail head (0.25-0.5% quinine solution) were determined 1-1.5 hours after antibody application to the neurons. The antibody did not change neural responses evoked with tactile stimulation of the snail head. These effects were similar to those found in L-RP11 neurons after serotonin or cAMP applications as well as after nociceptive sensitization of the snail. It was suggested that protein homologically related the SMP-69 in mammalians was involved in mechanisms of excitability as well as long-term specific plasticity regulation of L-RP11 neurons synaptic inputs from the head chemoreceptors in snail Helix lucorum.  相似文献   

11.
The long-term sensitization of avoidance reflex was produced in snail Helix pomatia, which led to the remarkable increase in the pneumostome closures period. The formation of long-term sensitization is also accompanied by increase in excitability of command neurons of this reflex. One of the possible mechanisms of this phenomenon is the depolarization of these cells. The quantitative redistribution of water-soluble proteins with relative mobility 0.54 0.42 0.40 was also observed in the identified neurons, both included in the avoidance reflex (command neurons) and non-included (bursting neurons, nerve cells of pool D). The protein with the relative mobility of 0.75 was unique for the nerve cells of neurosecretory pool D in sensitized snails, and was never found in control animals.  相似文献   

12.
In Helix lucorum snail we studied the effects of ouabain, inhibitor of Na,K-pump, on the depression of cholinosensitivity in command neurons of withdrawal behavior and the role of the intracellular free Ca2+. The cellular analog of the negative learning (habituation) was used Transmembrane integral inward currents were recorded from the identified LPa2, LPa3, RPa3, and RPa2 neurons in ganglia preparation using two-electrode voltage clamp technique. Acetylcholine (ACh) was locally applied iontophoretically. Reduction of neuronal cholinosensitivity was estimated as a depth of depression of the ACh-induced inward current during rhythmic local application of ACh (interstimulus interval of 1-3 min) onto the somatic membrane. Bath application of ouabain (0.1 mM) produced an increase in depression in one group of neurons and its decrease in another group. After 60-150 min of spontaneous diffusion of a calcium ion chelator BAPTA (1 mM) from the intracellular microelectrode, ouabain produced only the increase in depression. If CaCl2 (100 mM) was added to the solution of the voltage-recording intracellular microelectrode, 60 min later ouabain produced only the reduction of the depression of the ACh current. The conclusion is drawn that the inhibition of the Na,K-pump by ouabain modifies the depression of neuronal cholinosensitivity in the cellular analog of habituation. The direction of the modulatory effect depends on the basal concentration of the intracellular free Ca2+.  相似文献   

13.
The effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonist (+)-MK-801 hydrogen maleate (MR801) on plasticity of different sensory inputs of the L-RPl1 command neurons were studied in Helix lucorum snail during nociceptive sensitization. Application of sensitizing stimulation onto the snail head or foot in the control semi-intact preparation initiated depression of neural responses evoked by tactile or chemical sensory stimulation during the short-term period of sensitization and significant facilitation of neural responses during the long-period of sensitization. Sensitizing stimulation of snail head against the background of MK-801 application (10-30 microM) produced a pronounced depression of neural responses to chemical stimulation of the head both in the short- and long-term sensitization periods. At the same time, sensitizing stimulation of the foot or head during the MK-801 application produced the same changes in neural responses to chemical stimulation of the foot and tactile stimulation of the foot or head as in the control preparation. It can be suggested that NMDA-like glutamate receptors are selectively involved in the mechanisms of plasticity induction in the synaptic inputs of the command LPl1 and RPl1 neurons, which process the information resulting from chemical excitation of the snail head (a specific receptor skin site for these neurons in Helix lucorum).  相似文献   

14.
Electrophysiological parameters and bound calcium (Ca(b)) level dynamics during sensitization development or conditioning of food aversion were studied in the command neurons of defense behaviour in the snail Helix lucorum. Responses evoked by a testing sensory stimulus were facilitated 50-60 min after the first sensitizing stimulation, while conditioned responses appeared 80-90 min after the first conditioning. It was the most essential electrophysiological difference between the long-term sensitization and conditioning. Analysis of the Ca(b)) dynamics in the neurons showed significant differences in calcium-dependent metabolism during the sensitization and conditioning, likely underlying the electrophysiological differences.  相似文献   

15.
Influence of ouabain, the inhibitor of Na,K-pump, on habituation of Helix to tactile stimulation was identical to the ouabain-induced modification of cholinosensitivity reduction in command neurones of defensive behaviour of Helix lucorum in cellular model of habituation. Effects of intracellularly injected ligands of two types of Ca2+ -depot receptors, inositoltrisphosphate (IP3) and ryanodine receptors, on ouabain-induced changes were studied in cellular model of habituation. The antagonist of IP3 receptors heparin (0.1 mM), their agonist IP3 (0.1 mM) and inhibitor of ryanodine-dependent Ca2+ mobilization dantrolen (0.1 mM) prevented the depression of acetylcholine-induced current from the ouabain-evoked modification. The agonist/antagonist of ryanodine receptors ryanodine at two tested concentrations (0.1 mM and 1 mM) did not change the ouabain effect. It is concluded that Ca2+ released from intracellular Ca2+ -depots via IP3 receptors is involved into neuronal mechanism of Na,K-pump regulation of habituation in Helix lucorum to tactile stimulation.  相似文献   

16.
Inhibitor ofadenylate cyclase (SQ 22,536) and inhibitors ofserin/threonine protein kinases A (PKA -Rp-cAMPS), G (PKG - H-Arg-Lys-Arg-Ala-Arg-Lys-Glu-OH), calcium/calmodulin-dependent kinase II (CaMKII - KN-93), p38mitogen-activated (MAPK - PD 169316), and tyrosine protein kinases (genistein), including their Src-family (PP2), weaken the depression of the acetylcholine-induced inward current (ACh-current) in command Helix neurons of defensive behavior under conditions of rhythmical local acetylcholine applications to the soma in the cellular analogue of habituation. Selective inhibitor of protein kinase C (PKC - chelerythrine) does not change the depression of the ACh-current. Mathematical simulation of the influence of the inhibitors applied on a number of membrane-connected acetylcholine receptors made it possible to obtain the design curves consistent with the experimental curves of the ACh-current depression. The experimental data and the results of calculations allowed us to make the following assumptions. The reversible depression of sensitivity to ACh of command Helix neurons of defensive behavior in the cellular correlate of habituation depends on the decrease in the number of membrane-connected ACh receptors as a result of activation of several serine/threonine protein kinases: A, G, CaMKII, p38 MAPK (without the participation of PKC), and tyrosine protein kinases including the family of Src-kinases. The main targets of all protein kinases under study (excluding PKC) in command neurons are the proteins of cytoskeleton (actin microfilaments and microtubules). Phosphorylation of these proteins evokes polymerization and stabilization ofactin microfilaments, stabilization of the main microtubule protein tubulin, a change in the activity of motor proteins responsible for the speed of receptor endocytosis and exocytosis. The PKG action is indirect via the modification of actin-myosin interaction. Protein kinase A, CaMKII, and tyrosine Src-kinase phosphorylate also proteins activating receptor translocation into clathrin-coated membrane invaginations during endocytosis.  相似文献   

17.
A sensitizing treatment with 5–10% quinine solution causes short-term (lasting 50–70 min) and long-term (lasting several hours) changes in the activity of the command neurons for defensive behavior (LPl1 and PPl1) in the snailHelix lucorum. The short-term effects are characterized by a depolarizing shift in membrane potential, increased excitability, and an initial increase in the content of bound calcium (Ca-c) in the neurons. The long-term effects appear as facilitation of synaptic components of neuronal responses to sensory stimuli without any changes in excitability and in membrane potential, and also as a repeated increase of Ca-c content. Treatment with anisomycin or cycloheximide during sensitization acquirement prevents development of long-term sensitization.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 109–115, March–April, 1993.  相似文献   

18.
Hill numbers before and after tetanic stimulation were calculated from dose-response dependence between the amplitude of the acetylcholine-induced inward current and the amplitude of the iontophoretic current through a micropipette filled with acetylcholine. Semi-intact Helix lucorum preparation was used. Acetylcholine-induced inward currents were recorded using two-electrode voltage clamp technique. Tetanic stimulation evoked changes in dose-response dependence but did not modify the slopes of dose-response plots (Hill numbers were 1.42 + 0.15 before and 1.41 + 0.15 after tetanization). It was concluded that increase in cholinosensitivity in LPa3 and RPa3 neurons after the orthodromic tetanic stimulation of nervus intestinalis is not accompanied by changes in the number of ligand-binding sites per acetylcholine receptor molecule or proportion of nicotinic and muscarinic cholinoreceptors.  相似文献   

19.
The role of intracellular calcium in changes in excitability and responses of defense behavior command neurons LP11 and PP11 of Helix lucorum to sensory stimulation was investigated in semi-intact preparation of a snail during nociceptive sensitization. It was found that application of sensitizing stimuli onto the snail's head initiated membrane depolarization, increase in its excitability as well as depression of neural responses evoked by sensory stimuli in short-term period of sensitization and significant facilitation of neural responses in long-term period of sensitization. To elucidate the contribution of LP11 and PP11 neurons in plasticity rearrangements involved in the mechanisms of sensitization, we applied sensitizing stimuli during strong hyperpolarization of the neurons or after intracellular injection of calcium chelators. Application of sensitizing stimuli during hyperpolarization of the neurons suppressed the increase in membrane excitability and depressed the neural responses evoked by chemical stimulation of snail's head i.m. short- and long-term periods of sensitization. At the same time, synaptic facilitation of neural responses evoked by tactile stimulation of snail's head and foot was observed, which was similar to synaptic facilitation in the control sensitized snail. Intracellular injection of EGTA or BARTA (calcium chelators) before sensitization suppressed synaptic facilitation in neural responses evoked by sensory stimulation. Under these conditions, the increase in excitability was more pronounced then in the control snail neurons. The experimental results suggest the changes in neural responses evoked by sensory stimulation in sensitized snails involve postsynaptic calcium-dependent mechanisms of plasticity in LP11 and PP11 neurons.  相似文献   

20.
In experiments on the isolated nervous system, responses of the same command neurones of avoidance behaviour to electrical stimulation of the intestinal nerve were compared in adult snails (Helix pomatia) and in snails 1-20 days old. Dynamics of spike reactions of the command neurones to rhythmic nerve stimulation differed in adult and newborn snails. In the neurones of young snails, no sensitization, common in the adult animals, was observed. Study of excitatory input in the command neurones during rhythmic nerve stimulation suggests independence of habituation of synaptic input amplitude and spike response sensitization, because dynamics of habituation coincided in the young and adult snails while spike response underwent sensitization only in adult animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号