首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
Equilibrium binding and activity studies indicate that adenosine 5'-diphosphate binds to phosphorylase kinase with high affinity at a site, or sites, distinct from the catalytic site. Equilibrium dialysis at pH 6.8 and 8.2, with and without Mg2+, and with phosphorylated and nonphosphorylated enzyme preparations revealed approximately 8 ADP binding sites per alpha 4 beta 4 gamma 4 delta 4 hexadecamer, with Kd values ranging from 0.26 to 17 microM. Decreasing the pH from 8.2 to 6.8 or removing the Mg2+ enhanced the affinity for ADP. At pH 6.8, ADP stimulated the phosphorylase conversion and autophosphorylation activities of the nonactivated enzyme. Analogs of ADP with modifications at the 2'-, 3'-, and 5'-positions allowed determination of structural requirements for the stimulation of activity. ADP seems to alter the conformation of the beta subunit because addition of the nucleotide inhibits its dephosphorylation by phosphoprotein phosphatase and its chemical cross-linking by 1,5-difluoro-2,4-dinitrobenzene. The binding affinities and effects of ADP suggest that it may function physiologically as an allosteric effector of phosphorylase kinase.  相似文献   

2.
Treatment of purine nucleoside phosphorylase (EC 2.4.2.1), from either calf spleen or human erythrocytes, with 2,3-butanedione in borate buffer or with phenylglyoxal in Tris buffer markedly decreased the enzyme activity. At pH 8.0 in 60 min, 95% of the catalytic activity was destroyed upon treatment with 33 mM phenylglyoxal and 62% of the activity was lost with 33 mm 2,3-butanedione. Inorganic phosphate, ribose-1-phosphate, arsenate, and inosine when added prior to chemical modification all afforded protection from inactivation. No apparent decrease in enzyme catalytic activity was observed upon treatment with maleic anhydride, a lysine-specific reagent. Inactivation of electrophoretically homogeneous calf-spleen purine nucleoside phosphorylase by butanedione was accompanied by loss of arginine residues and of no other amino acid residues. A statistical analysis of the inactivation data vis-à-vis the fraction of arginines modified suggested that one essential arginine residue was being modified.  相似文献   

3.
Escherichia coli acetate kinase (ATP: acetate phosphotransferase, EC 2.7.2.1.) was inactivated in the presence of either 2,3-butanedione in borate buffer or phenylglyoxal in triethanolamine buffer. When incubated with 9.4 mM phenylglyoxal or 5.1 mM butanedione, the enzyme lost its activity with an apparent rate constant of inactivation of 0.079 min-1, respectively. The loss of enzymatic activity was concomitant with the loss of an arginine residue per active site. Phosphorylated substrates of acetate kinase, ATP, ADP and acetylphosphate as well as AMP markedly decreased the rate of inactivation by both phenylglyoxal and butanedione. Acetate neither provided any protection nor affected the protection rendered by the adenine nucleotides. However, it interfered with the protection afforded by acetylphosphate. These data suggest that an arginine residue is located at the active site of acetate kinase and is essential for its catalytic activity, probably as a binding site for the negatively charged phosphate group of the substrates.  相似文献   

4.
Reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity. This modification reaction is markedly influenced by pH and is partially reversible upon dialysis. Carbamyl phosphate or carbamyl phosphate with succinate partially protect the catalytic subunit and the native enzyme from inactivation by phenylglyoxal. In the native enzyme complete protection from inactivation is afforded by N-(phosphonacetyl)-L-aspartate. The decrease in enzymatic activity correlates with the modification of 6 arginine residues on each aspartate transcarbamylase molecule, i.e. 1 arginine per catalytic site. The data suggest that the essential arginine is involved in the binding of carbamyl phosphate to the enzyme. Reaction of the single thiol on the catalytic chain with 2-chloromercuri-4-nitrophenol does not prevent subsequent reaction with phenylglyoxal. If N-(phosphonacetyl)-L-aspartate is used to protect the active site we find that phenylglyoxal also causes the loss of activation of ATP and inhibition by CTP. The rate of loss of heterotropic effects is exactly the same for both nucleotides indicating that the two opposite regulatory effects originate at the same location on the enzyme, or are transmitted by the same mechanism between the subunits, or both.  相似文献   

5.
Pyruvate kinase from pig heart is inactivated by the specific arginyl reagent phenylglyoxal. The loss of activity is caused by the reaction of a single molecule of phenylglyoxal per subunit of enzyme. During inactivation 3 - 6 arginyl residues are modified dependent on the concentration of phenylglyoxal used for modification. The solubility of the protein is reduced by the modification. ATP or phosphoenolpyruvate protect against inactivation. A single arginine is less subject to chemical modification in their presence. Therefore we assume that an arginine is essential at the substrate binding site. The activating ion K does not affectinactivation, where as Mg2 diminishes inactivation. Pyruvate kinase from rabbit muscle is modified by phenylglyoxal in a similar manner.  相似文献   

6.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

7.
K Konishi  M Fujioka 《Biochemistry》1987,26(25):8496-8502
Rat liver glycine methyltransferase is inactivated irreversibly by phenylglyoxal in potassium phosphate buffer. The inactivation obeys pseudo-first-order kinetics, and the apparent first-order rate constant for inactivation is linearly related to the reagent concentration. A second-order rate constant of 10.54 +/- 0.44 M-1 min-1 is obtained at pH 8.2 and 25 degrees C. Amino acid analysis shows that only arginine is modified upon treatment with phenylglyoxal. Sodium acetate, a competitive inhibitor with respect to glycine, affords complete protection in the presence of S-adenosylmethionine. Acetate alone has no effect on the rate of inactivation. The value of the dissociation constant for acetate determined from the protection experiment is in good agreement with that obtained by kinetic analysis. Comparison of the amount of [14C]phenylglyoxal incorporated into the protein and the number of arginine residues modified in the presence and absence of protecting ligands indicates that modification of one arginine residue per enzyme subunit eliminates the enzyme activity, and this residue is identified as Arg-175 by peptide analysis. The arginine-modified glycine methyltransferase appears to bind S-adenosylmethionine as the native enzyme does, as seen from quenching of the protein fluorescence by S-adenosylmethionine. These results suggest the requirement of Arg-175 in binding the carboxyl group of the substrate glycine.  相似文献   

8.
Chemical modification of calcineurin by phenylglyoxal was used to probe for the presence of arginine at, or in close proximity to, the catalytic site of this phosphatase. Phenylglyoxal inactivated calcineurin with a second-order rate constant of 1.5 M-1 min-1 at pH 7.5 and 30 degrees C. The inactivation reaction was extremely sensitive to Ca2+-induced conformational changes on calcineurin; removal of this metal ion from the reaction medium increased the rate of inactivation by almost 1 order of magnitude. Furthermore, significant protection of calcineurin by ADP was observed only in the presence of Ca2+, which suggests either that distinct sites are modified by phenylglyoxal in the absence and presence of Ca2+ or that the metal ion promotes binding of ADP to calcineurin. Inactivation of calcineurin by phenyl[2-14C]glyoxal resulted in the incorporation of more than 12 eq of the reagent. However, a kinetic analysis of the order of the inactivation reaction and complete protection of calcineurin by p-nitrophenyl phosphate suggest that only one of the modified residues is responsible for the loss of enzymatic activity. Protection of calcineurin by ADP was enhanced severalfold by calmodulin, which correlated well with a calmodulin-stimulated decrease in the Ki for this ligand. Protection of calcineurin from inactivation by phenylglyoxal was also observed in the presence of various other nucleotides; half-maximal protection by these poor substrates and competitive inhibitors was observed at concentrations near their respective inhibition constants. Thus, the results of this modification study indicate that at least 1 arginine residue is essential for the expression of catalytic activity of the calmodulin-regulated phosphatase.  相似文献   

9.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

10.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is completely inactivated by phenylglyoxal and 2,3-butanedione in borate buffer at pH 8.4, with pseudo-first-order kinetics and a second-order rate constant of 144 min-1 X M-1 and 21.6 min-1 X M-1, respectively. Phosphoenolpyruvate, ADP and Mn2+ (alone or in combination) protect the enzyme against inactivation, suggesting that the modification occurs at or near to the substrate-binding site. Almost complete restoration of activity was obtained when a sample of 2,3-butanedione-inactivated enzyme was freed of excess modifier and borate ions, suggesting that only arginyl groups are modified. The changes in the rate of inactivation in the presence of substrates and Mn2+ were used to determine the dissociation constants for enzyme-ligand complexes, and values of 23 +/- 3 microM, 168 +/- 44 microM and 244 +/- 54 microM were found for the dissociation constants for the enzyme-Mn2+, enzyme-ADP and enzyme-phosphoenolpyruvate complexes, respectively. Based on kinetic data, it is shown that 1 mol of reagent must combine per enzyme active unit in order to inactivate the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of 3-4 mol [7-14C]phenylglyoxal per mol of enzyme subunit. Assuming a stoichiometry of 1:1 between phenylglyoxal incorporation and arginine modification, our results suggest that the modification of only two of the three to four reactive arginine residues per phosphoenolpyruvate carboxykinase subunit is responsible for inactivation.  相似文献   

11.
Rat liver S-adenosylhomocysteinase (EC 3.3.1.1) is inactivated by phenylglyoxal following pseudo-first order kinetics. The dependence of the apparent first order rate constant for inactivation on the phenylglyoxal concentration shows that the inactivation is second order in reagent. This fact together with the reversibility of inactivation upon removal of excess reagent and the lack of reaction at residues other than arginine as revealed by amino acid analysis and incorporation of phenylglyoxal into the protein indicate that the inactivation is due to the modification of arginine residue. The substrate adenosine largely but not completely protects the enzyme against inactivation. Although the modification of two arginine residues/subunit is required for complete inactivation, the relationship between loss of enzyme activity and the number of arginine residues modified, and the comparison of the numbers of phenylglyoxal incorporated into the enzyme in the presence and absence of adenosine indicate that one residue which reacts very rapidly with the reagent compared with the other is critical for activity. Although the phenylglyoxal treatment does not result in alteration of the molecular size of the enzyme or dissociation of the bound NAD+, the intrinsic protein fluorescence is largely lost upon modification. The equilibrium binding study shows that the modified enzyme apparently fails to bind adenosine.  相似文献   

12.
Rabbit muscle phosphoglucose isomerase was modified with phenylglyoxal or 2,3-butanedione, the reaction with either reagent resulting in loss of enzymatic activity in a biphasic mode. At slightly alkaline pH butanedione was found to be approximately six times as effective as phenylglyoxal. The inactivation process could not be significantly reversed by removal of the modifier. Competitive inhibitors of the enzyme protected partially against loss of enzyme activity by either modification. The only kind of amino acid residue affected was arginine. However, more than one arginine residue per enzyme subunit was found to be susceptible to modification by the dicarbonyl reagents. From protection experiments it was concluded (i) that both modifiers react specifically with an arginine in the phosphoglucose isomerase active site and nonspecifically with one or more arginine residues elsewhere in the enzyme molecule, (ii) that modification at either loci causes loss of catalytic activity, and (iii) that butanedione has a higher preference for active site arginine than for arginine residues outside of the catalytic center whereas the opposite is true for phenylglyoxal.  相似文献   

13.
Chemical modification by phenylglyoxal was used to investigate relationships between the structure, function, and regulation of the type II calmodulin-dependent protein kinase. Modification of the protein kinase by phenylglyoxal resulted in specific labeling of one distinct site, most likely an important arginine residue, with concomitant inactivation of the enzyme. Labeling and inactivation of the protein kinase was prevented by Mg2+-ADP which suggests that modification occurred at, or in close proximity to, its nucleotide-binding pocket. Half-maximal protection by Mg2+-ADP was enhanced by calmodulin which decreased the K0.5 for ADP from 540 to 61 microM. This response of the enzyme to calmodulin indicates that the modulator protein increases the affinity of the protein kinase for nucleotides. Inactivation of the enzyme by phenylglyoxal was dependent on the presence of Mg2+ or Ca2+/calmodulin, and further enhanced by the simultaneous addition of these effectors to the reaction. The Mg2+ effect is indicative of binding of this divalent metal ion to the protein kinase even in the absence of calmodulin and nucleotides. The stimulation of the modification reaction by calmodulin indicates an increase in the reactivity or accessibility of the modified residue in response to calmodulin-regulated conformational changes on the enzyme. The calmodulin-induced changes observed in this study may play important roles in the molecular mechanisms of activation of the type II calmodulin-dependent protein kinase.  相似文献   

14.
In native nonactivated phosphorylase kinase [14C] iodacetamide interacts with 50 cysteinyl residues per enzyme molecule (alpha beta gamma delta)4. According to their reactivity towards iodacetamide these residues can be classified into 3 groups. The most reactive cysteinyl residues are involved in the enzyme activation caused by modification of SH-groups. The enzyme inhibition is biphasic. The fast and slow inactivation reactions follow the pseudo-first order kinetics. The rate of inactivation is increased by Ca2+. Mg-ATP effectively protects the enzyme against the inactivation and chemical modification of three SH-groups per protomer (apha beta gamma delta). The kinetics of inactivation and of the [14C] iodacetamide label incorporation demonstrate that two cysteinyl residues per enzyme protomer (alpha beta gamma delta) are essential for the enzyme activity. These residues are located near the ATP-binding site of the beta and gamma subunits of phosphorylase kinase.  相似文献   

15.
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacteriumSynechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form.V max at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.  相似文献   

16.
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacteriumSynechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form.V max at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.  相似文献   

17.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

18.
Acetate kinase purified from Acinetobacter calcoaceticus was inhibited by diethylpyrocarbonate with a second-order rate constant of 620 M-1.min-1 at pH 7.4 at 30 degrees C and showed a concomitant increase in absorbance at 240 nm due to the formation of N-carbethoxyhistidyl derivative. Activity could be restored by hydroxylamine and the pH curve of inactivation indicates the involvement of a residue with a pKa of 6.64. Complete inactivation of acetate kinase required the modification of seven residues per molecule of enzyme. Statistical analysis showed that among the seven modifiable residues, only one is essential for activity. 5,5'-dithiobis(2-nitrobenzoic acid), p-chloromercuryphenylsulfonate, N-ethylmaleimide and phenylglyoxal did not affect the enzyme activity. These results suggest that the inactivation is due to the modification of one histidine residue. The substrates, acetate and ATP, protected the enzyme against inactivation, indicating that the modified histidine residue is located at or near the active site.  相似文献   

19.
To reveal the structure of the ATP-binding site(s) in rabbit muscle phosphorylase kinase, we modified the enzyme with adenosine polyphosphopyridoxals. Adenosine tri- and tetraphosphopyridoxals at micromolar concentrations effectively inactivated the enzyme in a time-dependent manner. Inactivation of the enzyme was accelerated by the addition of Ca2+ and Mg2+. Protection from inactivation was afforded by adenylyl beta,gamma-imidodiphosphate and ADP. In reversible inhibition kinetics, adenosine polyphosphopyridoxals as well as their reduced compounds (adenosine polyphosphopyridoxines) competed with ATP. These results suggest that adenosine polyphosphopyridoxals bind to the ATP-binding site(s) in phosphorylase kinase. When phosphorylase kinase was incubated with adenosine triphosphopyridoxal in the presence of Ca2+ and Mg2+, incorporation of the label into alpha, beta, and gamma subunits was observed. In the absence of both cations, larger amounts of the label were incorporated into all the subunits. Structural study on adenosine triphosphopyridoxal-modified sites in the gamma subunit (having a catalytic site) revealed that Lys-151 is mainly labeled. Based on the results of the present and other studies, it is suggested that the site around Lys-151 is involved in recognition of the substrate protein.  相似文献   

20.
Treatment of the plasma membrane H+-ATPase of Neurospora crassa with the arginine-specific reagents phenylglyoxal or 2,3-butanedione at 30 degrees C, pH 7.0, leads to a marked inhibition of ATPase activity. MgATP, the physiological substrate of the enzyme, protects against inactivation. MgADP, a competitive inhibitor of ATPase activity with a measured Ki of 0.11 mM, also protects, yielding calculated KD values of 0.125 and 0.115 mM in the presence of phenylglyoxal and 2,3-butanedione, respectively. The excellent agreement between Ki and KD values makes it likely that MgADP exerts its protective effect by binding to the catalytic site of the enzyme. Loss of activity follows pseudo-first order kinetics with respect to phenylglyoxal and 2,3-butanedione concentration, and double log plots of pseudo-first order rate constants versus reagent concentration yield slopes of 0.999 (phenylglyoxal) and 0.885 (2,3-butanedione), suggesting that the modification of one reactive site/mol of H+-ATPase is sufficient for inactivation. This stoichiometry has been confirmed by direct measurements of the incorporation of [14C]phenylglyoxal. Taken together, the results support the notion that one arginine residue, either located at the catalytic site or shielded by a conformational change upon nucleotide binding, plays an essential role in Neurospora H+-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号