首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Chalcone synthase is a key metabolic control point in the biosynthesis of a large number of flavonoids and isoflavonoid metabolites. Chs genes in bean comprise a multigene family, of which certain individual members can be differentially induced with respect to kinetics and extent of accumulation. A RT-PCR technique, based on primers designed complementary to a common conserved region and divergent 3′ sequences of the bean chs family, was developed to detect the expression of individual members of the chs family. The semi-quantitative technique is based on the amplification of short, overlapping sequences differing in size. The method was found to be sensitive, rapid, and capable of distinguishing among the individual chs members (chs 1, 4, 14, and 17). The tissue-specific expression of chs isogenes in bean seedlings, flowers and callus, as well as the effect of light on chs expression in etiolated tissue was documented.  相似文献   

5.
6.
A cDNA library produced from mRNA isolated from the pericarp of wild-type tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig) at the first visible sign of fruit ripening was differentially screened to identify clones whose homologous mRNAs were present at reduced levels in fruit of the tomato ripening mutant, ripening inhibitor,rin. Five clones were isolated (pERT 1, 10, 13, 14, 15). Accumulation of mRNA homologous to each of these clones increased during the ripening of wild-type fruit and showed reduced accumulation in ripening rin fruit. The levels of three of them (homologous to ERT 1, 13 and 14) were increased by ethylene treatment of the mutant fruit. A further clone, ERT 16 was identified for a mRNA present at a high level in both normal and mutant fruit at early stages of ripening. Database searches revealed no significant homology to the DNA sequence of ERT 14 and 15; however, DNA and derived amino acid sequence of ERT 1 both contain regions of homology with several reported UDP-glucosyl and glucuronosyl transferases (UDPGT) and with a conserved UDPGT motif. A derived amino acid sequence from the ERT 10 cDNA contains a perfect match to a consensus sequence present in a number of dehydrogenases. The ERT 13 DNA sequence has homology with an mRNA present during potato tuberisation. The presence of these mRNAs in tomato fruit is unreported and their role in ripening is unknown. The ERT 16 DNA sequence has homology with a ripening/stress-related cDNA isolated from tomato fruit pericarp.  相似文献   

7.
In the amphidiploid genome of oilseed rape (Brassica napus) the diploid ancestral genomes of B. campestris and B. oleracea have been merged. As a result of this crossing event, all gene loci, gene families, or multigene families of the A and C genome types encoding a certain protein are now combined in one plant genome.In the case of the multigene family for glutamine synthetase, the key enzyme of nitrogen assimilation, six different cDNA sequences were isolated from leaf and root specific libraries. One sequence pair (BnGSL1/BnGSL2) was characterized by the presence of amino- terminal transit peptides, a typical feature of all nuclear encoded chloroplast proteins. Two other cDNA pairs (BnGSR1-1/BnGSR1-2 and BnGSR2-1/BnGSR2-2) with very high homology between each other were found in a root specific cDNA library and represent protein subunits for cytosolic glutamine synthetase isoforms.Comparative PCR amplifications of genomic DNA isolated from B. napus, B. campestris and B. oleracea followed by sequence–specific restriction analyses of the PCR products permitted the assignment of the cDNA sequences to either the A genome type (BnGSL1/BnGSR1- 1/BnGSR2-1) or the C genome type (BnGSL2/BnGSR1-2/BnGSR2-2). Consequently, the ancestral GS genes of B. campestris and B. oleracea are expressed simultaneously in oilseed rape. This result was also confirmed by RFLP (restriction fragment length polymorphism) analysis of RT-PCR products.In addition, the different GS genes showed tissue specific expression patterns which are correlated with the state of development of the plant material. Especially for the GS genes encoding the cytosolic GS isoform BnGSR2, a marked increase of expression could be observed after the onset of leaf senescence.  相似文献   

8.
cDNA clones encoding homologues of expansins, a class of cell wall proteins involved in cell wall modification, were isolated from various stages of growing and ripening fruit of tomato (Lycopersicon esculentum). cDNAs derived from five unique expansin genes were obtained, termed tomato Exp3 to Exp7, in addition to the previously described ripening-specific tomato Exp1 (Rose et al. (1997) Proc Natl Acad Sci USA 94: 5955–5960). Deduced amino acid sequences of tomato Exp1, Exp4 and Exp6 were highly related, whereas Exp3, Exp5 and Exp7 were more divergent. Each of the five expansin genes showed a different and characteristic pattern of mRNA expression. mRNA of Exp3 was present throughout fruit growth and ripening, with highest accumulation in green expanding and maturing fruit, and lower, declining levels during ripening. Exp4 mRNA was present only in green expanding fruit, whereas Exp5 mRNA was present in expanding fruit but had highest levels in full-size maturing green fruit and declined during the early stages of ripening. mRNAs from each of these genes were also detected in leaves, stems and flowers but not in roots. Exp6 and Exp7 mRNAs were present at much lower levels than mRNAs of the other expansin genes, and were detected only in expanding or mature green fruit. The results indicate the presence of a large and complex expansin gene family in tomato, and suggest that while the expression of several expansin genes may contribute to green fruit development, only Exp1 mRNA is present at high levels during fruit ripening.  相似文献   

9.
10.
11.
The nucleotide sequence and derived amino acid sequence were determined for a full-length version of the tomato cDNA clone, pTOM75, the mRNA for which has previously been shown to accumulate in roots, ripening fruit and senescing leaves. Computer analysis of the predicted protein product, which we have named tomato ripening-associated membrane protein (TRAMP) indicates strong homology to known transmembrane channel proteins from other organisms. Northern analysis showed that this gene was induced by waterstress and that this induction was unaffected in an ABA-deficient genetic back-ground.  相似文献   

12.
13.
Innan H 《Genetics》2003,163(2):803-810
The infinite-site model of a small multigene family with two duplicated genes is studied. The expectations of the amounts of nucleotide variation within and between two genes and linkage disequilibrium are obtained, and a coalescent-based method for simulating patterns of polymorphism in a small multigene family is developed. The pattern of DNA variation is much more complicated than that in a single-copy gene, which can be simulated by the standard coalescent. Using the coalescent simulation of duplicated genes, the applicability of statistical tests of neutrality to multigene families is considered.  相似文献   

14.
15.
16.
17.
18.
Metallothioneins are small cysteine-rich proteins with strong binding capacity for heavy metals. In animals and fungi they are involved in cellular detoxification processes. Although genes for similar proteins exist in plants, less is known about the putative functions of their protein products. Here, we describe the characterisation of cDNAs specific for four genes (LEMT1, LEMT2, LEMT3 and LEMT4) encoding metallothionein-like proteins from tomato. Based on the characteristic cysteine pattern, the LEMT1, LEMT3 and LEMT4 gene products represent type 2 proteins. In contrast, the LEMT2 protein might establish a new structural pattern of metallothionein-like proteins not described before. Mapping experiments demonstrate that all four genes are localised at different genetic loci within the tomato genome. The members of the small gene family show a differential organ specific expression pattern. Expression of these genes is also influenced by heavy metals and by treatment with the thiol-oxidising drug diamide. We further describe the expression of the LEMT genes under different iron supply conditions both in tomato wild type as well as in the mutant chloronerva, which is defective in metal uptake regulation and exhibits a characteristic apparent iron deficiency syndrome.  相似文献   

19.
Human SSX was first identified as the gene involved in the t(X;18) translocation in synovial sarcoma. SSX is a multigene family, with 9 complete genes on chromosome Xp11. Normally expressed almost exclusively in testis, SSX mRNA is expressed in various human tumors, defining SSX as a cancer/testis antigen. We have now cloned the mouse ortholog of SSX. Mouse SSX genes can be divided into Ssxa and Ssxb subfamilies based on sequence homology. Ssxa has only one member, whereas 12 Ssxb genes, Ssxb1 to Ssxb12, were identified by cDNA cloning from mouse testis and mouse tumors. Both Ssxa and Ssxb are located on chromosome X and show tissue-restricted mRNA expression to testis among normal tissues. All putative human and mouse SSX proteins share conserved KRAB and SSX-RD domains. Mouse tumors were found to express some, but not all, Ssxb genes, similar to the SSX activation in human tumors.  相似文献   

20.
The complete sequence of the Arabidopsis genome enables definitive characterization of multigene families and analysis of their phylogenetic relationships. Using a consensus sequence previously defined for glycosyltransferases that use small-molecular-weight acceptors, 107 gene sequences were identified in the Arabidopsis genome and used to construct a phylogenetic tree. Screening recombinant proteins for their catalytic activities in vitro has revealed enzymes active toward physiologically important substrates, including hormones and secondary metabolites. The aim of this study has been to use the phylogenetic relationships across the entire family to explore the evolution of substrate recognition and regioselectivity of glucosylation. Hydroxycoumarins have been used as the model substrates for the analysis in which 90 sequences have been assayed and 48 sequences shown to recognize these compounds. The study has revealed activity in 6 of the 14 phylogenetic groups of the multigene family, suggesting that basic features of substrate recognition are retained across substantial evolutionary periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号