首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate-inhibitory analysis has shown that single “atypical” cholinesterase (ChE) presents in tissues of freshwater oligochaete Lumbriculus variegatus (O.F. M?ller). This enzyme differs both from “typical” acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Specific activity of oligochaete ChE ranges 55–100 μmol ATCh g−1 tissue min−1 or 0.7–1 μmol ATCh mg−1 protein min−1, ratio of maximal rates (V) of substrate hydrolysises is 100:72:71:83 for acetyl-, propionyl-, butyryl- and acetyl-β-metylthiocholine respectively. Values of Michaelis constant (Km) for these substrates are (1.9–2.5) × 10−4 M. The bimolecular enzyme inhibition rate constants (kII) for organophosphorus inhibitors paraoxon, DDVP, and iso-OMPA are 107, 106 и 103 mol−1 | min−1. ATCh and BuTCh exhibit the effect of substrate inhibition of ChE activity, while PrTCh and MeTCh do not.  相似文献   

2.
Study of substrate-inhibitory specificity of liver mitochondrial monoamine oxidase (MAO) of adult individuals of the whitefish Coregonus lavaretus ludoga P. from the Ladoga Lake has revealed distinguished peculiarities of catalytic properties of this enzyme. The studied MAO, on one hand, like the classical enzyme of homoiothermal animals, is able to deaminate tyramine, serotonin, benzylamine, tryptamine, and β-phenylalanine, but, on the other hand, to deaminate histamine, the classic substrate of diamine oxidase. The found equal activity and sorptional ability of the enzyme toward six studied substrates including histamine, as well as results of the substrate-inhibitory analysis with use of specific inhibitors-deprenyl and chlorgilin-indicate homogeneity of the enzyme. The detected for the first time among the fish MAO wide substrate specificity and an unusually low sensitivity to both studied acetylene inhibitors does not allow ascribing unanimously the studied enzyme to the MAO forms known in organs and tissues of homoiothermal organisms. Apparently, the revealed enzyme form of this poikilothermal organism is not the true MAO, but performs a large amine oxidase function.  相似文献   

3.
Abstract— The severity of mental changes in malnourished children is related to both the period of development when the malnutrition occurs and the amount of environmental stimulation. In the present study the effect of imposing protein undernutrition during the period of gestation or postweaning period, and protein-energy undernutrition during the suckling period on cholinergic enzyme activity was investigated in the rat. Six different dietary treatments were given and the activity of ChAc, ChE, and AChE determined in the forebrain, brainstem, and cerebellum of male rats on day 49. Undernutrition imposed during gestation, suckling or postweaning all resulted in changes in cholinergic enzyme activity. The direction and degree of change of enzyme activity depended on the period when undernutrition was imposed as well as the brain region. In the forebrain ChE and AChE activities were altered, in the brainstem, ChAc, ChE and AChE activities were altered, and in the cerebellum ChAc activity was altered. The effect on the activity of the individual cholinergic enzymes was complex and was not the same in the different regions of the brain or even for the same brain region exposed to undernutrition during different periods of development. These results along with earlier work indicate that cholinergic enzyme activity in brain of undernourished rats can be altered by both the period of development when undernutrition is imposed and the amount of environmental stimulation.  相似文献   

4.
Study of substrate-inhibitory specificity of liver mitochondrial monoamine oxidase (MAO) of sexually mature individuals of the whitefish Coregonus lavaretus ludoga P. from the Ladoga Lake has revealed distinguished peculiarities of catalytical properties of this enzyme. The studied MAO, on one hand, like the classical enzyme of homoiothermal animals, is able to deaminate tyramine, serotonin, benzylamine, tryptamine, and beta-phenylalanine, but, on the other hand, to deaminate histamine, the classic substrate of diamine oxidase. The found equal activity and sorptional ability of the enzyme toward six studied substrates including histamine, as well as results of the substrate-inhibitory analysis with use of specific inhibitors--deprenyl and chlorgilin--indicate homogeneity of the enzyme. The detected for the first time among the fish MAO wide substrate specificity and an unusually low sensitivity to both studied acetylene inhibitors does not allow ascribing unanimously the studied enzyme to the known MAO forms of organs and tissues of homoiothermal organisms. Apparently, the revealed enzyme form of poikilothermal organism is not the true MAO, but performs a large amine oxidase function.  相似文献   

5.
研究了有机磷农药甲地基嘧啶流磷,有机氯农药林丹,菊酯类农药氯菊酯,表面活性剂直链苯磺酸钠和重金属Zn对钩虾(Gammarus pulex L.)胆碱酯酶(ChE)和谷胱甘肽转硫酶(GST)活性变化以及毒性影响,结果表明,在暴露24h和48h后,仅有机磷农药甲基嘧硫磷显著抑制胆碱酯的酶的活性,在暴露48h后,有机氯农药林丹和菊酯类农药氯菊酯能显著提高谷胱甘肽转硫酶活性,在暴露24h后,仅梵在导致谷胱甘肽转硫酶明显升高,作为生物标志物,胆碱酯酶比谷胱甘肽转硫酶具有更高的特异性,这两种生物标志物较毒性试验方法具有更高的敏感性。  相似文献   

6.
The neurotransmitter acetylcholine (ACh) is present in plants including bryophytes. The first biochemical evidence for ACh hydrolysis by enzyme cholinesterase (ChE) in bryophytes is presented. Thirty-nine species belonging to 16 families of bryophytes were surveyed for ChE activity. Thirty species belonging to 13 families showed ChE activity. Of the bryophytes tested, Anoectangium bicolor showed the highest ChE activity. Widespread distribution of ChE in bryophytes indicates their suitability as a system to study the role of ACh in plants.  相似文献   

7.
Hinz  V.C.  Kolb  J.  Schmidt  B. H. 《Neurochemical research》1998,23(7):931-938
The effects of subchronic oral administration of metrifonate, a long-acting cholinesterase (ChE) inhibitor, on cholinergic neurotransmission were assessed in young adult male Wistar rats. Animals were treated twice daily with metrifonate. In a pilot study testing a 100 mg/kg dose of metrifonate for up to 14 days, ChE activity was found to steadily decrease to reach maximum inhibition levels of about 55%, 80% and 35% in brain, erythrocytes and plasma. Steady-state inhibition levels were attained by the 10th day of treatment. When metrifonate-treatment was discontinued, ChE activity in plasma returned to control levels within another day, while erythrocyte and brain ChE activity took more than 2 weeks to recover. In subsequent dose-response studies, metrifonate treatment was given for 3 and 4.5 weeks at doses of 0, 12.5, 25, 50, and 100 mg/kg, to different groups of animals, respectively. Correlation analysis indicted that brain ChE inhibition was more accurately reflected by erythrocyte than by plasma ChE inhibition, although all effects were highly correlated. The changes in ChE activity were not paralleled by changes in other parameters of the cholinergic neurotransmission, such as acetylcholine synthesis rate or acetylcholine receptor binding. It is therefore concluded that repeated administration of metrifonate to rats induces a long-lasting inhibition of ChE activity in a dose-related and predictable manner, which is neither subject to desensitization nor paralleled by counterregulatory downregulation of muscarinic or nicotinic receptor binding sites in brain.  相似文献   

8.
Plasma acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity was measured repeatedly in 27 mallard (Anas platyrhynchos) ducklings between 7 and 85 days of age to determine age-dependent changes in enzyme activity. Plasma AChE, BChE, and total cholinesterase (ChE) activity decreased significantly with age. The relative proportion of AChE in total ChE activity also decreased slightly with age. Since some anti-ChE chemicals can selectively inhibit AChE or BChE activity, characterization of age-dependent changes in the activity of each enzyme may be necessary to accurately identify the occurrence of pesticide exposure.  相似文献   

9.
Study of the substrate-inhibitory specificity of mitochondrial monoamine oxidase (MAO) of hepatopancreas of the octopus Bathypolypus arcticus revealed distinctive peculiarities of catalytic properties of this enzyme. The studied enzyme, on one hand, like the classic MAO of homoiothermal animals, is able to deaminate tyramine, serotonin, benzylamine, tryptamine, b-phenylethylamine, while, on the other hand, it deaminates histamine and does not deaminate putrescine-classic substrates of diamine oxidase (DAO). Results of the substrate-inhibitory analysis with use of chlorgiline and deprenyl are indirect proofs for the existence in the octopus hepatopancreas of one molecular MAO form. Semicarbazide and pyronine G turned out to be weak irreversible inhibitors, four derivatives of acridine-irreversible inhibitors of the intermediate effectiveness with respect to the octopus hepatopancreas MAO; specificity of action of inhibitors at deamination of different substrates was equal.  相似文献   

10.
Summary The fine structure and distribution of cholinesterase (ChE) activity in the ventral nerve cord of the earthworm (Lumbricus terrestris) was studied, using acetyl- and butyrylthiocholine iodides as substrates and iso-OMPA, 284C51 and eserine as inhibitors to discriminate between acetylcholinesterase (AChE) and other cholinesterase (ns.ChE) activities.The earthworm ventral nerve cord exhibits intense ChE activity. Both AChE and ns.ChE were present and they had identical distribution, being located mainly in the supportive glial cells. Most neurones of the ventral nerve cord contained no histochemically demonstrable activity. The ventral giant nerve cells were observed with the electron microscope to exhibit AChE activity. The enzyme was situated in the membranes of the rough-surfaced endoplasmic reticulum and in peculiar lamellated bodies but not in the membranes of the Golgi complex.  相似文献   

11.
Studies have been made on the motor activity of amnion and chick embryo from the 5th to the 14th day of development. Between the 5th and the 8th day of embryogenesis, when embryonic movements are rather poor, amnion contractions are mainly observed, their frequency being maximum to the 7th day. On further development (8-14 days), with the increase in the mass of the limbs which account for embryonic movements (body extremities), the increase in the intensity of their motor activity is paralleled by the decrease in the frequency of amnion contractions. Therefore, during the intensive growth and development of mainly frontal part of the embryo, the deficiency of motor activity of rather undeveloped body and extremities is presumably compensated by temporal motor activity of the amnion. Between the 8th and the 10th day, synchronous movements of embryo and amnion are observed. Possible mechanisms of synchronization are discussed.  相似文献   

12.
Most of the phosphoinositide-specific phospholipase C activity in human amnion at term was found to be attributable to a single isoform (Mr 85,000). Phospholipase C purified from amnion catalyzed the calcium-dependent hydrolysis of both phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate. The high phospholipase C activity of amnion cells isolated at 38-41 weeks of gestation declined greater than 80% during the initial 2-5 days of culture to values characteristic of amnion tissue in early gestation. Activities of phospholipase A2 and phosphatidylinositol synthase remained essentially unaltered during this period of culture. Loss of phospholipase C activity was apparently due neither to the appearance of an inhibitor nor to the loss of an activator and most likely reflected a decrease in the amount of enzyme in amnion cells. Basal production of prostaglandin E2 (PGE2) by amnion cells also declined greatly during the period of loss of phospholipase C activity. Involvement of phospholipase C in the regulation of amnion prostaglandin production was also supported by the finding that the phospholipase C inhibitor, U-73122, potently inhibited amnion cell PGE2 production. In contrast, vasopressin, which appears to stimulate prostaglandin production in amnion cells by a phospholipase C-dependent mechanism, was equipotent in stimulating PGE2 production by amnion cells on Day 2 and Day 5 of culture, even though phospholipase C activity had declined by more than 75%. Furthermore, epidermal growth factor stimulation of PGE2 production by amnion cells appeared to be largely attributable to an increase in prostaglandin H synthase activity and did not involve an increase in phospholipase C activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Summary The distribution of acetylcholinesterase (AChE; E.C. 3.1.1.7), other cholinesterases (ns.ChE; E.C. 3.1.1.8) and eserine-resistant carboxylic esterases (ns. E; E.C. 3.1.1.1) was studied in the developing myoneural junction of the rat tibialis anterior muscle from the 16th intrauterine day onwards. Acetyl-and butyrylthiocholine were used as substrates for AChE and ns.ChE, and -naphthyl acetate for ns. E.Acetylcholinesterase was first visible in 18-day rat embryos, ns.ChE in 21-day embryos and ns. E in 1-day-old postnatal rats and thereafter. Both AChE and ns.ChE activities were localized at the level of the plasma membrane in the middle of the muscle fibres. In the early stages this area of activity had the appearance of a plate-like structure, which deepened to form a depression in the surface of the muscle fibre by the 2nd to the 4th postnatal day. About 5 days later subneural lamellaes appeared in this structure, and ramification and segmentation took place, their extent increasing concomitantly with the increase of enzyme activity. The adult pattern was attained by the age of one month. Precise localization of ns. E was not possible in the immature stages, mainly owing to the granularity of the reaction end-product. After the age of about 10 days, however, the distribution of the reaction end-product suggested a mainly presynaptic location. Other cholinesterases and ns. E, but not AChE, were detected in the neurilemma cells along nerve fibres. This neurilemmal enzyme activity gradually diminished after birth and was lost at about the age of 3 weeks.These observations demonstrate that the formation of the junction between the nerve and the muscle fibre takes place just before the first appearance of AChE activity in a sharply delineated area of the plasma membrane. The structural changes made apparent by the distribution of the reaction end-products are assumed to be linked to the spatial rearrangement of the synaptic membranes, seen in earlier electron microscopic studies.  相似文献   

14.
Previous work in this laboratory showed that during intoxication of rats with diisopropyl fluorophosphate at day 20 of pregnancy the recovery of ChE activity was faster in fetal than in maternal brain. In the present study the differences between recovery rates in dam and fetus brain were evaluated in terms of molecular forms and spontaneous reactivation. Using ultracentrifugation on sucrose gradient two molecular forms of ChE, namely 10S (tetrameric globular G4 form) and 4S (monomeric G1 form) were detected both in maternal and fetal brain of untreated rats. The ratios 10S/4S were about 5.0 and 0.75 for dams and 20-day fetuses, respectively. DFP administration (1.1 mg/kg sc) inducing at 90 min an about 80% inhibition of ChE in maternal brain caused a shift in its 10S/4S ratio to 1.63, and to 0.53 in fetal brain (in which overall inhibition was about 70%). This means that 10S forms were preferentially inhibited by DFP both in maternal and fetal brain. After 24 and 48 hr there was a negligible recovery of overall ChE in maternal brain with no shift in the ratio. On the other hand, complete recovery of ChE in fetal brain within 48 hr was accompanied by almost total normalization of the 10S/4S ratio. Rapid recovery of fetal ChE appeared not to depend on hydrolysis of DFP-inhibited ChE. In fact, maternal and fetal DFP-inhibited enzyme preparations following the addition of oximes (pralidoxime or obidoxime) in vitro showed similar rates of reactivation. The overall data indicate considerable differences in recovery rate of molecular forms between dams and fetuses, but not in reactivation by dephosphorylation.  相似文献   

15.
S M Somani  S N Dube 《Life sciences》1989,44(25):1907-1915
Dose response of physostigmine (Phy) was studied in rat using various doses (25-500 micrograms/kg i.m.). Rats were sacrificed 15 min after Phy administration. Blood and tissues were analyzed for ChE activity by radiometric method and Phy concentration by HPLC method. A comparison of ChE values in different tissues of rats indicated that ChE activity was highest in brain (7.11 mumol/min/g) and least in diaphragm (0.67 mumol/min/g). The enzyme activity was eleven times more in brain as compared to diaphragm. Phy produced a dose-dependent inhibition of ChE in RBC (18-42%), brain (23-35%) and diaphragm (25-35%) from 50 to 200 micrograms/kg, then ChE inhibition was plateaued from 200 to 500 micrograms/kg in these tissues. A dose related ChE inhibition was seen in heart (16-50%) and thigh muscle (8-53%) from 50 to 500 micrograms/kg. Phy concentration increased linearly from 50 to 400 micrograms/kg in plasma, brain, heart and thigh muscle. These results indicate that ChE inhibition is linear up to 200 micrograms/kg in RBC, 150 micrograms/kg in brain and 300 micrograms/kg in heart. This linearity is not consistent in other tissues.  相似文献   

16.
CHOLINESTERASE IN DENERVATED END PLATES AND MUSCLE FIBRES   总被引:5,自引:4,他引:1       下载免费PDF全文
Parallel studies were made of cholinesterase activities and localizations in denervated rat and rabbit gastrocnemius muscle. Koelle's histochemical reaction was used for demonstrating the localization of cholinesterases. Enzyme activities in whole sliced muscle were measured by electrometric titration. The Cartesian ampulla-diver technique was used for cholinesterase activity determinations in end plate regions or in small pieces of the muscle fibre itself. No changes in the activity of cholinesterases (ChE) were found in the whole denervated muscle which would account for its chemical supersensitivity. The ChE distribution pattern was changed so that the end plate region became less active in the denervated muscle than in the normal one. The decrease in ChE activity in the end plates seems to be largely compensated for by an increase of this enzyme elsewhere in the muscle. A possible connection between the spatial spread of cholinesterase activity and the enlargement of the acetylcholine-sensitive surface is discussed.  相似文献   

17.
Cholinesterase (ChE) activity was measured in the central nervous system (CNS) and in the digestive gland of the pestiferous land snail Achatinafulica Bowdich, by the method of Huegra et al. (1952). Acetylcholinesterase (AChE), and benzoylcholinesterase (BeChE) activity was higher in the former than in the latter. The complete inhibition of the enzyme activity with 10(-2) M eserine indicates that the ChE examined is AChE. The Km values of the AChE from the digestive gland and the CNS were 3.1 x 10(-5) and 9.0 x 10(-5) (M), respectively. The enzyme is the most active at pH 8.2 and 37 degrees C up to 60 min.  相似文献   

18.
Oligohaline copepods such as Eurytemora affinis are widespread in estuaries of northwestern Europe. These minute crustaceans are highly sensitive to contamination and thus serve as useful bioindicators for the monitoring of pollutant effects. The use of decreased cholinesterase (ChE) activity as a sublethal biomarker of exposure to neurotoxic compounds supposes that ChE has been defined in copepods. This study reports the partial purification and characterization of ChE extracted from E. affinis. Analysis by non-denaturing PAGE and by isoelectric focusing indicated that the enzyme is probably a single dimeric form of 140 KDa, with a pI of 6.2. This enzyme is likely an acetylcholinesterase (AChE) since it hydrolyzes acetylthiocholine iodide at a higher rate than other substrates, such as butyrylthiocholine and propionylthiocholine, at pH 7.0 and 25 degrees C, and is inhibited by eserine but not by iso-OMPA. The enzyme exhibited high sensitivity to some of the various pollutants tested. The kinetic properties of this ChE were compared with those of other invertebrate ChEs.  相似文献   

19.
Studies have been made of the spontaneous contractions of the amnion and acetylcholine sensitivity of amniotic membrane in 8--14-day chick embryos. In 12--14-day embryos, the spontaneous rhythmic contractions were rather rare as compared to those in 8--9-day ones, their frequency being also lower. On the basis of kinetic analysis, it was concluded that both the dissociation constant (K) and the value of Pmax do not exhibit significant changes for tonotropic reaction from the 8th to the 14th day and for chronotropic reaction--from the 8th to the 10th day of incubation. After the 10th day of incubation, dose-effect chronotropic reaction not expressed. The spontaneous activity of the amnion and acetylcholine sensitivity of the amniotic membrane depend on the temperature being maximal at 38 degrees C. Possible regulatory mechanisms of contractile activity in chick amnion are discussed.  相似文献   

20.
Marine copepods such as Tigriopus brevicornis are widespread along the Atlantic coast of Europe. These minute crustaceans are highly sensitive to contamination and thus serve as useful bioindicators for the monitoring of pollutant effects. The use of decreased cholinesterase (ChE) activity as a subletal biomarker of exposure to neurotoxic supposes that ChE has been defined in copepods. This study reports the partial purification, separation and characterization of ChE extracted from T. brevicornis. This enzyme is apparently an acetylcholinesterase (AChE) since it hydrolyzed acetylthiocholine iodide at a higher rate than other substrates and was inhibited by eserine but not by iso-OMPA. Electrophoretic studies showed that there is probably a single dimeric form defined by its apparent molecular weight (200 kDa) and sensitivity to inhibitors. The kinetic properties of this ChE were compared with those of other invertebrate ChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号