首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prokaryotic toxin-antitoxin stress response loci   总被引:11,自引:0,他引:11  
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.  相似文献   

3.
4.
RelE of Escherichia coli is a global inhibitor of translation that is activated by nutritional stress. Activation of RelE depends on Lon-mediated degradation of RelB, the antagonist that neutralizes RelE. In vitro, RelE cleaves synthetic mRNAs positioned at the ribosomal A-site. We show here that in vivo overexpression of RelE confers cleavage of mRNA and tmRNA in their coding regions. RelE-mediated cleavage depended on translation of the RNAs and occurred at both sense and stop codons. RelE cleavage of mRNA and tmRNA was also induced by amino acid starvation. An ssrA deletion strain was hypersensitive to RelE, whereas overproduction of tmRNA counteracted RelE toxicity. After neutralization of RelE by RelB, rapid recovery of translation required tmRNA, indicating that tmRNA alleviated RelE toxicity by rescuing ribosomes stalled on damaged mRNAs. RelE proteins from Gram-positive Bacteria and Archaea cleaved tmRNA with a pattern similar to that of E. coli RelE, suggesting that the function and target of RelE may be conserved across the prokaryotic domains.  相似文献   

5.
6.
7.
Escherichia coli encodes two rel loci, both of which contribute to the control of synthesis of macromolecules during amino acid starvation. The product of relA (ppGpp synthetase I) is responsible for the synthesis of guanosine tetraphosphate, ppGpp, the signal molecule that exerts stringent control of stable RNA synthesis. The second rel locus, relBE, was identified by mutations in relB that confer a so-called 'delayed-relaxed response' characterized by continued RNA synthesis after a lag period of approximately 10 min after the onset of amino acid starvation. We show here that the delayed-relaxed response is a consequence of hyperactivation of RelE. As in wild-type cells, [ppGpp] increased sharply in relB101 relE cells after the onset of starvation, but returned rapidly to the prestarvation level. RelE is a global inhibitor of translation that is neutralized by RelB by direct protein-protein interaction. Lon protease activates RelE during amino acid starvation by degradation of RelB. We found that mutations in relB that conferred the delayed-relaxed phenotype destabilized RelB. Such mutations confer severe RelE-dependent inhibition of translation during amino acid starvation, indicating hyperactivation of RelE. Hyperactivation of RelE during amino acid starvation was shown directly by measurement of RelE-mediated cleavage of tmRNA. The RelE-mediated shutdown of translation terminated amino acid consumption and explains the rapid restoration of the ppGpp level observed in relB mutant cells. Restoration of the prestarvation level of ppGpp, in turn, allows for the resumption of stable RNA synthesis seen during the delayed-relaxed response.  相似文献   

8.
Prokaryotic toxin–antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an incomplete RNase fold that may explain why RelE requires its substrate mRNA to presented by the ribosome. In contrast, RelE homologue YoeB has a complete RNase fold and cleaves RNA independently of ribosomes in vitro. Here, we show that YoeB cleavage of mRNA is strictly dependent on translation of the mRNA in vivo. Non-translated model mRNAs were not cleaved whereas the corresponding wild-type mRNAs were cleaved efficiently. Model mRNAs carrying frameshift mutations exhibited a YoeB-mediated cleavage pattern consistent with the reading frameshift thus giving strong evidence that YoeB cleavage specificity was determined by the translational reading frame. In contrast, site-specific mRNA cleavage by MazF occurred independently of translation. In one case, translation seriously influenced MazF cleavage efficiency, thus solving a previous apparent paradox. We propose that translation enhances MazF-mediated cleavage of mRNA by destabilization of the mRNA secondary structure.  相似文献   

9.
10.
The direct interaction of the Escherichia coli cytotoxin RelE with its specific antidote, RelB, was demonstrated in two ways: (i) copurification of the two proteins and (ii) a positive yeast two-hybrid assay involving the relB and relE genes. In addition, the purified RelE protein exhibited ribosome-binding activity in an in vitro assay, supporting previous observations suggesting that it is an inhibitor of translation.  相似文献   

11.
Prokaryotic chromosomes code for toxin–antitoxin (TA) loci, often in multiple copies. In E.coli, experimental evidence indicates that TA loci are stress-response elements that help cells survive unfavorable growth conditions. The first gene in a TA operon codes for an antitoxin that combines with and neutralizes a regulatory ‘toxin’, encoded by the second gene. RelE and MazF toxins are regulators of translation that cleave mRNA and function, in interplay with tmRNA, in quality control of gene expression. Here, we present the results from an exhaustive search for TA loci in 126 completely sequenced prokaryotic genomes (16 archaea and 110 bacteria). We identified 671 TA loci belonging to the seven known TA gene families. Surprisingly, obligate intracellular organisms were devoid of TA loci, whereas free-living slowly growing prokaryotes had particularly many (38 in Mycobacterium tuberculosis and 43 in Nitrosomonas europaea). In many cases, TA loci were clustered and closely linked to mobile genetic elements. In the most extreme of these cases, all 13 TA loci of Vibrio cholerae were bona fide integron elements located in the V.cholerae mega-integron. These observations strongly suggest that TA loci are mobile cassettes that move frequently within and between chromosomes and also lend support to the hypothesis that TA loci function as stress-response elements beneficial to free-living prokaryotes.  相似文献   

12.
The Escherichia coli relBE operon encodes a toxin-antitoxin pair, RelE-RelB. RelB can reverse inhibition of protein synthesis by RelE in vivo. We have found that although RelE does not degrade free RNA, it cleaves mRNA in the ribosomal A site with high codon specificity. Among stop codons UAG is cleaved with fast, UAA intermediate and UGA slow rate, while UCG and CAG are cleaved most rapidly among sense codons. We suggest that inhibition of protein synthesis by RelE is reversed with the help of tmRNA, and that RelE plays a regulatory role in bacteria during adaptation to poor growth conditions.  相似文献   

13.
Toxin-antitoxin (TA) systems contribute to plasmid stability by a mechanism that relies on the differential stabilities of the toxin and antitoxin proteins and leads to the killing of daughter bacteria that did not receive a plasmid copy at the cell division. ParE is the toxic component of a TA system that constitutes along with RelE an important class of bacterial toxin called RelE/ParE superfamily. For ParE toxin, no crystallographic structure is available so far and rare in vitro studies demonstrated that the target of toxin activity is E. coli DNA gyrase. Here, a 3D Model for E. coli ParE toxin by molecular homology modeling was built using MODELLER, a program for comparative modeling. The Model was energy minimized by CHARMM and validated using PROCHECK and VERIFY3D programs. Resulting Ramachandran plot analysis it was found that the portion residues failing into the most favored and allowed regions was 96.8%. Structural similarity search employing DALI server showed as the best matches RelE and YoeB families. The Model also showed similarities with other microbial ribonucleases but in a small score. A possible homologous deep cleft active site was identified in the Model using CASTp program. Additional studies to investigate the nuclease activity in members of ParE family as well as to confirm the inhibitory replication activity are needed. The predicted Model allows initial inferences about the unexplored 3D structure of the ParE toxin and may be further used in rational design of molecules for structure-function studies.  相似文献   

14.
15.
Bacteria show remarkable adaptability under several stressful conditions by shifting themselves into a dormant state. Less is known, however, about the mechanism underlying the cell transition to dormancy. Here, we report that the transition to dormant states is mediated by one of the major toxin-antitoxin systems, RelEB, in a cell density-dependent manner in Escherichia coli K-12 MG1655. We constructed a strain, IKA121, which expresses the toxin RelE in the presence of rhamnose and lacks chromosomal relBE and rhaBAD. With this strain, we demonstrated that RelE-mediated dormancy is enhanced at high cell densities compared to that at low cell densities. The initiation of expression of the antitoxin RelB from a plasmid, pCA24N, reversed RelE-mediated dormancy in bacterial cultures. The activation of RelE increased the appearance of persister cells against β-lactams, quinolones, and aminoglycosides, and more persister cells appeared at high cell densities than at low cell densities. Further analysis indicated that amino acid starvation and an uncharacterized extracellular heat-labile substance promote RelE-mediated dormancy. This is a first report on the induction of RelE-mediated dormancy by high cell density. This work establishes a population-based dormancy mechanism to help explain E. coli survival in stressful environments.  相似文献   

16.
17.
Toxin-antitoxin modules are present on chromosomes of almost all free-living prokaryotes. Some are implicated to act as stress-responsive elements, among their many functional roles. The YefM-YoeB toxin-antitoxin system is present in many bacterial species, where YefM belongs to the Phd family antidote of phage P1, whereas YoeB is a homolog of the RelE toxin of the RelBE system, rather than the Doc system of phage P1. YoeB, a ribonuclease, is believed to be conformationally stable, whereas YefM has been proposed to be a member of intrinsically disordered proteins. The ribonucleolytic activity of YoeB is neutralized by YefM upon formation of the YefM-YoeB complex. We report here the crystal structure of Mycobacterium tuberculosis YefM from two crystal isoforms. Our crystallographic and biophysical studies reveal that YefM is not an intrinsically unfolded protein and instead forms a well-defined structure with significant secondary and tertiary structure conformations. The residues involved in core formation of the folded structure are evolutionarily conserved among many bacterial species, supporting our observation. The C-terminal end of its polypeptide is highly pliable, which adopts different conformations in different monomers. Since at the physiological level YefM controls the activity of YoeB through intricate protein-protein interactions, the conformational heterogeneity in YefM revealed by our structure suggests that these might act a master switch in controlling YoeB activity.  相似文献   

18.
19.
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.Key words: ribosome, translation, stress, starvation, polysome  相似文献   

20.
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号