首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

3.
The binding characteristics and specificity of the rat hepatic ferritin receptor were investigated using ferritins prepared from rat liver, heart, spleen, kidney and serum, human liver and serum, guinea pig liver and horse spleen as well as ferritins enriched with respect to either H- or L-type subunit composition, prepared by chromatofocusing of rat liver ferritin on Mono-P or by reverse-phase chromatography of ferritin subunits on ProRPC 5/10. No significant difference was apparent in the binding of any of the tissue ferritins, or of ferritins of predominantly acidic or basic subunit composition. However, serum ferritin bound with a lower affinity. The effect of carbohydrate on the ferritin-receptor binding was examined by glycosidase treatment of tissue and serum ferritins. Tissue ferritin binding was unaffected, while serum ferritin binding affinity was increased to that of the tissue ferritins. Inhibition of ferritin binding by lactoferrin was not due to common carbohydrate moieties as previously suggested but was due to direct binding of lactoferrin to ferritin. Therefore, carbohydrate residues do not appear to facilitate receptor-ferritin binding, and sialic acid residues present on serum ferritin may in fact interfere with binding. The results indicate that the hepatic ferritin receptor acts preferentially to remove tissue ferritins from the circulation. The lower binding affinity of serum ferritin for the ferritin receptor explains its slower in vivo clearance relative to tissue ferritins.  相似文献   

4.
Sex difference in the ferritin content of rat liver   总被引:3,自引:0,他引:3  
  相似文献   

5.
Radioactive iron incorporated into rat liver ferritin in vivo and then released in vitro up to 24h after injection follows 'last-in-first-out' behaviour. Thus, within this period at least, the added iron does not equilibrate with iron already present in the molecule's iron-core.  相似文献   

6.
The effect of iron on ferritin turnover in rat liver   总被引:1,自引:0,他引:1  
125I-labelled angiotensin II (A II) specifically binds to solubilized receptors extracted from rat isolated glomeruli using CHAPS (3-[3-( cholamidopropyl ) dimethylammonio ]-1-propanesulfonate). The yield of solubilization of the binding sites was 3.3%. Equilibrium was reached after 15-20 min and specific binding represented 75% of total binding. Dissociation of the hormone-receptor complex after addition of an excess of A II was very slow in the presence of Ca2+ and Mg2+. [Sar1 Ala8] A II and [Sar1 Ile8] A II were more potent as competitive inhibitors of 125I-labelled A II than A II itself and its heptapeptide. These basic features of 125I-labelled A II binding to the extracted material were similar to those observed previously with untreated glomeruli.  相似文献   

7.
Rat liver mitochondria and rat liver mitoplasts mobilize iron from ferritin by a mechanism which depends on a respiratory substrate (preferentially succinate), a small molecular weight electron mediator (FMN, phenazine methosulphate or methylene blue) and (near) anaerobic conditions. The release process under optimized conditions (approx. 50 mumol/1 FMN, 1 mmol/l succinate, 0.35 mmol/1 Fe(III) (as ferritin iron), 37 degrees C and pH 7.40) amounts to 0.9--1.2 nmol iron/mg protein per min. The results suggest that ferritin might function as an intermediate in the cytosolic transport of iron to the mitochondria.  相似文献   

8.
Summary Haemosiderin has been isolated from siderosomes and ferritin from the cytosol of livers of rats iron-loaded by intraperitoneal injections of iron-dextran. Siderosomal haermosiderin, like ferritin, was shown by electron diffraction to contain iron mainly in the form of small particles of ferrihydrite (5Fe2O3 · 9H2O), with average particle diameter of 5.36±1.31 nm (SD), less than that of ferritin iron-cores (6.14±1.18 nm). Mössbauer spectra of both iron-storage complexes are also similar, except that the blocking temperature,T B, for haemosiderin (23 K) is lower than that of ferritin (35 K). These values are consistent with their differences in particle volumes assuming identical magnetic anisotropy constants. Measurements of P/Fe ratios by electron probe microanalysis showed the presence of phosphorus in rat liver haemosiderin, but much of it was lost on extensive dialysis. The presence of peptides reacting with anti-ferritin antisera and the similarities in the structures of their iron components are consistent with the view that rat liver haemosiderin arises by degradation of ferritin polypeptides, but its peptide pattern is different from that found in human-thalassaemia haemosiderin. The blocking temperature, 35 K, for rat liver ferritin is near to that reported, 40 K, for human-thalassaemia spleen ferritin. However, the haemosiderin isolated from this tissue, in contrast to that from rat liver, had aT B higher than that of ferritin. The iron availability of haemosiderins from rat liver and human-thalassaemic spleen to a hydroxypyridinone chelator also differed. That from rat liver was equal to or greater, and that from human spleen was markedly less, than the iron availability from either of the associated ferritins, which were equivalent. The differences in properties of the two types of haemosiderin may reflect their origins from primary or secondary iron overload and differences in the duration of the overload.  相似文献   

9.
The utilization of ferritin as a source of iron for the ferrochelatase reaction has been studied in isolated rat liver mitochondria. 1. It was found that isolated rat liver mitochondria utilized ferritin as a source of iron for the ferrochelatase reaction in the presence of succinate plus FMN (or FAD). 2. Under optimal experimental conditions, i.e., approx. 50 micromol/1 FMN, 37 degrees C, pH 7.4 and 0.5 mmol/l Fe(III) (as ferritin iron), the release process, as shown by the formation of deuteroheme, amounted to approx. 0.5 nmol iron/min per mg protein. 3. The release process could not be elicited by ultrasonically treated mitochondria, lysosomes, microsomes or cytosol, i.e., the release of iron from ferritin was due to mitochondria and was a function of the in situ orientation of the mitochondrial inner membrane. 4. The release of iron from ferritin by the mitochrondria might be of relevance not only for the in situ synthesis of heme in the hepatocyte, but also with respect to the mechanism(s) by means of which iron is mobilized for transport to the erythroid tissue.  相似文献   

10.
1. The ferritin content of liver and spleen in normal and iron-loaded rats decreased during repeated phlebotomy. 2. During increased iron demand, ferritin is degraded in toto. 3. With the ESI and EELS technique the iron distribution was followed in different cell types and cellular compartments. 4. We have demonstrated two methods of iron mobilisation: (a) catabolism of lysosomal ferritin in toto and (b) delivery of ferritin from parenchymal cell into the bile and degradation of ferritin in toto.  相似文献   

11.
12.
Regulation of synthesis and turnover of ferritin in rat liver   总被引:30,自引:0,他引:30  
  相似文献   

13.
14.
1. The mechanism of the stimulation of ferritin synthesis by iron in vivo has been studied in rat liver. Ferritin synthesis and turnover was measured by [(14)C]leucine incorporation. 2. Actinomycin D had no inhibitory effect, after administration of iron, on [(14)C]leucine incorporation into ferritin but appeared to augment the effect of iron on ferritin synthesis. 3. Cycloheximide completely abolished the stimulation by iron of [(14)C]leucine into ferritin and was subsequently utilized to show that iron acts in vivo by translational induction of apoferritin synthesis, rather than by stabilization of apoferritin or its precursors. 4. This conclusion was confirmed by showing that 2 days after acute bleeding, when iron was in the process of being removed from hepatic ferritin stores, ferritin synthesis was decreased whereas breakdown rates were unchanged.  相似文献   

15.
The in vivo effect of hemin on both hepatic oxidative stress and heme oxygenase induction was studied. A marked increase in lipid peroxidation was observed 1 hr after hemin administration. Heme oxygenase-1 activity and expression appeared 6 hr after treatment, reaching a maximum between 12 and 15 hr after hemin administration. Such induction was preceded by a decrease in the soluble and enzymatic defenses, both effects taking place some hours before induction of heme oxygenase. Ferritin content began to increase 6 hr after heme oxygenase induction, and these increases were significantly higher 15 hr after treatment and remained high for at least 24 hr after hemin injection. Co-administration of tin protoporphyrin IX, a potent inhibitor of heme oxygenase, completely prevented the enzyme induction and the increase in ferritin levels, increasing the appearance of oxidative stress parameters. Administration of bilirubin, prevented the heme oxygenase induction as well as the decrease in hepatic GSH and the increase of lipid peroxidation when it was administered 2 hr before hemin treatment. These results indicate that the induction of heme oxygenase by hemin may be a general response to oxidant stress, by increasing bilirubin and ferritin levels and could therefore provide a major cellular defense mechanism against oxidative damage.  相似文献   

16.
Rat liver mitochondria and rat liver mitoplasts mobilize iron from ferritin by a mechanism which depends on a respiratory substrate (preferentially succinate), a small molecular weight electron mediator (FMN, phenazine methosulphate or methylene blue) and (near) anaerobic conditions.The release process under optimized conditions (approx. 50 μmol/l FMN, 1 mmol/l succinate, 0.35 mmol/l Fe(III) (as ferritin iron), 37°C and pH 7.40) amounts to 0.9–1.2 nmol iron/mg protein per min.The results suggest that ferritin might function as an intermediate in the cytosolic transport of iron to the mitochondria.  相似文献   

17.
In rats with chronic dietary iron overload, a higher amount of liver ferritin L-subunit mRNA was found mainly engaged on polysomes, whereas in control rats ferritin L-subunit mRNA molecules were largely stored in ribonucleoprotein particles. On the other hand, ferritin H-subunit mRNA was unchanged by chronic iron load and remained in the inactive cytoplasmic pool. In agreement with previous reports, in rats acutely treated with parenteral iron, only the ferritin L-subunit mRNA increased in amount, whereas both ferritin subunit mRNAs shifted to polysomes. This may indicate that, whereas in acute iron overload the hepatocyte operates a translation shift of both ferritin mRNAs to confront rapidly the abrupt entry of iron into the cell, during chronic iron overload it responds to the slow iron influx by translating a greater amount of L-subunit mRNA to synthesize isoferritins more suitable for long-term iron storage.  相似文献   

18.
19.
Ferritin present within siderosomes of iron-loaded rats has a faster anodal mobility than that of cytosolic ferritin from the same rats. A 19-amino-acid-residue peptide was isolated from this fast ferritin and shown to be derived from the C-terminal end of its L-subunit. A 17.3 kDa peptide seen on electrophoresis in denaturing gels of this ferritin accounts for the major portion of the original 182-residue subunit. The two peptides arise from cleavage within the 'insertion region' of the L-subunit sequence that occurs between the D and E helices and lies on the outside of the assembled molecule. This cleavage is present in about 80% of the L-subunits of siderosomal ferritin but nevertheless leaves the molecular structure otherwise intact. It gives rise to an apparent decrease in molecular size, accounting for the faster anodal mobility on native gels. Hence a new form of heterogeneity in ferritin preparations has been explained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号