首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by the phospholipase A2 from the venom of Agkistrodon halys blomhoffii, was studied at 25 degrees C and the ionic strength of 0.1 in the presence of 3-33.3 mM Ca2+, which can saturate the Ca2+-binding site of the enzyme. The initial velocity data, obtained at various concentrations of the substrate below the critical micelle concentration (cmc), were analyzed according to the Michaelis-Menten equation. The pH-dependence curve of the Km value exhibited only one transition below pH 8. The analytical results indicated that the pK value of 6.30 of an ionizable group changed to 6.54 on the binding of the monodispersed substrate. This ionizable group was assigned as the alpha-amino group on the basis of its pK value, which had been determined from the pH dependence of the binding constant of monodispersed n-dodecylphosphorylcholine (n-C12PC) (Ikeda and Samejima (1981) J. Biochem. 90, 799-804, and Haruki et al. (1986) J. Biochem. 99, 99-109). The pH-dependence curve of the kcat value exhibited two transitions, below pH 6.5 and above pH 9.5. The analytical results indicated the participation of two ionizable groups with pK values of 5.55 and 10.50. Deprotonation of the former and protonation of the latter group were found to be essential for the catalysis. The former ionizable group was assigned as His 48 in the active site on the basis of its pK value, which had been determined from the pH dependence of the binding constant of Ca2+ (Ikeda et al. (1981) J. Biochem. 90, 1125-1130).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The hydrolysis of 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by a cobra (Naja naja atra) venom phospholipase A2, was studied at 25 degrees C ionic strength 0.1 in the presence of 3-10 mM Ca2+, which can saturate the Ca2+-binding site of the enzyme. The initial velocity data, obtained at various concentrations of the substrate below the critical micellar concentration (cmc), were analyzed according to the Michaelis-Menten equation. The Km value was practically independent of pH (between pH 6.75 and 10.30). This finding was consistent with the result of a direct binding study on monodispersed n-alkylphosphorylcholines (Teshima et al. (1981) J. Biochem. 89, 1163-1174). The hydrolysis of the substrate was competitively inhibited by the presence of monodispersed n-dodecylphosphorylcholine (n-C12PC). These results indicated that the substrate and n-C12PC compete for the same site on the enzyme molecule. The pH dependence curve of the kinetic parameter, kcat/Km, exhibited three transitions, below pH 8, between pH 8 and 9.5, and above pH 10. The analysis indicated the participation of three ionizable groups with pK values of 7.25, 8.50, and 10.4. The deprotonation of the first group and the protonation of the third group were found to be essential for the catalysis. The first group was assigned as His 48 in the active site on the basis of its pK value, which had been determined from the pH dependence of the binding constant of Ca2+ (Teshima et al. (1981) J. Biochem. 89, 13-20).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The phosphatidylcholine-hydrolyzing phospholipase C, so-called "phospholipase C" (PLC), was isolated from the culture of Bacillus cereus strain IAM 1208. The amino-acid composition and partial N-terminal sequence of the purified enzyme were in good agreement with those expected from the nucleotide sequence for a PLC of strain ATCC 10987 [Johansen et al. (1988) Gene 65, 293-304]. The chain-length dependence of kinetic parameters for the PLC-catalyzed hydrolysis of monodispersed short-chain phosphatidylcholines (diCNPC, N = 3-6) was studied by a pH-stat assay method at 25 degrees C, pH 8.0, and ionic strength 0.2 in the presence of saturating amounts of Zn2+ (0.1 mM). The result was compared with those for snake venom phospholipases A2 [Teshima et al. (1989) J. Biochem. 106, 518-527]. It was found that the interaction of the PLC with the head group of the substrate molecule is very important for the binding. The pH dependences of kinetic parameters for the hydrolysis of monodispersed diC5PC and mixed micelles of diC16PC with Triton X-100 were also studied under the same conditions. An ionizable group, whose pK value is perturbed from 7.77 to 8.30 by substrate binding, was found to be essential to the catalysis. This group was tentatively assigned to His 14 on the basis of the results on X-ray crystallographic and chemical modification studies [Hough et al. (1989) Nature 338, 357-360 and Little (1977) Biochem. J. 167, 399-404].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The binding of Ca2+ to porcine pancreatic phospholipase A2 was studied by batch microcalorimetry. Enthalpies of binding at 25 degrees C were determined as a function of Ca2+ concentration in buffered solutions at pH 8.0 using both the Tris-HCl and Hepes-NaOH buffer systems. The calorimetric results indicate that protons are released on calcium binding and that in addition to the binding of the active-site calcium, there appears to be weak binding of a second Ca2+. Results from potentiometric titrations indicate that this proton release on binding Ca2+ arises from a change in pK of a histidine(s) functional group. The thermodynamic functions delta G0, delta H0 and delta S0 for calcium binding to phospholipase A2 have been determined. These results are compared with literature data for Ca2+ complex formation with some small molecules and also the protein troponin-C.  相似文献   

5.
6.
7F0----5D0 excitation spectroscopy of Eu3+ has been used to study the catalytic Ca2+-binding site of pancreatic phospholipases A2. Eu3+ binds competitively with Ca2+ to the enzyme with retention of about 5% of the activity found with Ca2+. The dissociation constants for the Eu3+-enzyme complexes of bovine phospholipase A2 and porcine isophospholipase A2 are 0.22 mM and 0.16 mM, respectively. Results obtained with the porcine phospholipase A2 at neutral pH indicate aggregation of this enzyme at protein concentrations above 0.18 mM. The Eu3+ bound at the catalytic site of pancreatic phospholipase A2 is coordinated to four or five water molecules, which, in conjunction with binding constant data, suggests the involvement of two or three protein ligands. Addition of a monomeric substrate analogue to the enzyme-Eu3+ complex results in the loss of an additional water molecule from the first coordination sphere of the bound Eu3+. This result suggests an interaction between the negative charge of the polar head group of the substrate analogue and the Eu3+. Binding of the enzyme-Eu3+ complex to micelles results in a nearly complete dehydration of the Eu3+ bound to the catalytic center. In the phospholipase A2-Eu3+-micelle complex, only one H2O molecule is coordinated to Eu3+. This dehydration at the active site of phospholipase A2 in the protein-lipid complex can be an important reason for the enhanced activity of this enzyme at lipid-water interfaces.  相似文献   

7.
M Ozawa  J Engel  R Kemler 《Cell》1990,63(5):1033-1038
We show that a synthetic peptide corresponding to the sequence of one putative Ca2+ binding motif of the cell adhesion molecule uvomorulin is able to complex Ca2+. This function is abolished if the first Asp in the peptide is replaced by Lys. Accordingly, we expressed in L cells mutant uvomorulin with a replacement of Asp to Lys or Ala. Mutant protein was resistant to Ca2+/trypsin under mild conditions but became susceptible at or near the site of replacement at higher concentrations, leaving the remaining Ca2+ binding domains protected. Remarkably, in cell aggregation assays both mutant uvomorulins failed to mediate cell adhesiveness, demonstrating that a single amino acid substitution in one Ca2+ binding site inactivates the adhesive function.  相似文献   

8.
Xanthine oxidase (oxidoreductase; XOR) and aldehyde oxidase (AO) are similar in protein structure and prosthetic group composition, but differ in substrate preference. Here we show that mutation of two amino acid residues in the active site of human XOR for purine substrates results in conversion of the substrate preference to AO type. Human XOR and its Glu803-to-valine (E803V) and Arg881-to-methionine (R881M) mutants were expressed in an Escherichia coli system. The E803V mutation almost completely abrogated the activity towards hypoxanthine as a substrate, but very weak activity towards xanthine remained. On the other hand, the R881M mutant lacked activity towards xanthine, but retained slight activity towards hypoxanthine. Both mutants, however, exhibited significant aldehyde oxidase activity. The crystal structure of E803V mutant of human XOR was determined at 2.6 A resolution. The overall molybdopterin domain structure of this mutant closely resembles that of bovine milk XOR; amino acid residues in the active centre pocket are situated at very similar positions and in similar orientations, except that Glu803 was replaced by valine, indicating that the decrease in activity towards purine substrate is not due to large conformational change in the mutant enzyme. Unlike wild-type XOR, the mutants were not subject to time-dependent inhibition by allopurinol.  相似文献   

9.
Unlike wild type recoverin with only two (the second and the third) functioning Ca+2-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca+2-binding site. This site was reconstructed from the fourth potential Ca+2-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca+2-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild-type recoverin. For communication II, see [1].  相似文献   

10.
Etzkorn C  Horton NC 《Biochemistry》2004,43(42):13256-13270
The 2.8 A crystal structure of the type II restriction endonuclease HincII bound to Ca(2+) and cognate DNA containing GTCGAC is presented. The DNA is uncleaved, and one calcium ion is bound per active site, in a position previously described as site I in the related blunt cutting type II restriction endonuclease EcoRV [Horton, N. C., Newberry, K. J., and Perona, J. J. (1998) Proc. Natl. Acad. Sci. U.S.A. 95 (23), 13489-13494], as well as that found in other related enzymes. Unlike the site I metal in EcoRV, but similar to that of PvuII, NgoMIV, BamHI, BglII, and BglI, the observed calcium cation is directly ligated to the pro-S(p) oxygen of the scissile phosphate. A calcium ion-ligated water molecule is well positioned to act as the nucleophile in the phosphodiester bond cleavage reaction, and is within hydrogen bonding distance of the conserved active site lysine (Lys 129), as well as the pro-R(p) oxygen of the phosphate group 3' of the scissile phosphate, suggesting possible roles for these groups in the catalytic mechanism. Kinetic data consistent with an important role for the 3'-phosphate group in DNA cleavage by HincII are presented. The previously observed sodium ion [Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47] persists in the active sites of the Ca(2+)-bound structure; however, kinetic data show little effect on the single-turnover rate of DNA cleavage in the absence of Na(+) ions.  相似文献   

11.
B I Lee  R Dua  W Cho 《Biochemistry》1999,38(24):7811-7818
The catalytic steps of the phospholipase A2 (PLA2)-catalyzed hydrolysis of phospholipids are preceded by interfacial binding. Among various pancreatic PLA2s, bovine pancreatic PLA2 (bpPLA2) has a unique interfacial binding mode in which Lys-56 plays an important role in its binding to anionic lipid surfaces. To identify the structural determinant of this unique interfacial binding mode of bpPLA2, we systematically mutated bpPLA2 and measured the effects of mutations on its interfacial binding and activity. First, different cationic clusters were generated in the amino-terminal alpha-helix by the N6R, G7K, and N6R/G7K mutations. These mutations enhanced the binding of bpPLA2 to anionic liposomes up to 15-fold. For these mutants, however, the K56E mutation still caused a large drop in interfacial affinity for and activity toward anionic liposomes, indicating that the generation of a cationic patch in the amino-terminal alpha-helix of bpPLA2 did not change its interfacial binding mode. Second, residues 62-66 that form a part of the pancreatic loop were deleted. For this deletion mutant (Delta62-66), which was as active as wild-type toward anionic liposomes, the K56E and K116E mutations (Delta62-66/K56E and Delta62-66/K116E) did not have significant effects on interfacial affinity. In contrast, the K10E mutation showed a much larger decrease in interfacial affinity (10-fold), indicating the deletion of residues 62-66 caused a major change in the interfacial binding mode. Finally, hydrophobic residues in positions 63 and 65 were replaced by bulkier ones (V63F and V63F/V65L) to pinpoint the structural determinant of the interfacial binding mode of bpPLA2. The effects of K10E and K56E mutations on the interfacial affinity and activity of these mutants showed that Val-63 and Val-65 of bpPLA2 are the structural determinant of its unique interfacial binding mode and that relatively conservative substitutions at these positions result in large changes in the interfacial binding mode among mammalian pancreatic PLA2s. Taken together, this study reveals how minor structural differences among homologous PLA2s can lead to distinct interfacial binding behaviors.  相似文献   

12.
Park C  Schultz LW  Raines RT 《Biochemistry》2001,40(16):4949-4956
His12 and His119 are critical for catalysis of RNA cleavage by ribonuclease A (RNase A). Substitution of either residue with an alanine decreases the value of k(cat)/K(M) by more than 10(4)-fold. His12 and His119 are proximal to the scissile phosphoryl group of an RNA substrate in enzyme-substrate complexes. Here, the role of these active site histidines in RNA binding was investigated by monitoring the effect of mutagenesis and pH on the stability of enzyme-nucleic acid complexes. X-ray diffraction analysis of the H12A and H119A variants at a resolution of 1.7 and 1.8 A, respectively, shows that the amino acid substitutions do not perturb the overall structure of the variants. Isothermal titration calorimetric studies on the complexation of wild-type RNase A and the variants with 3'-UMP at pH 6.0 show that His12 and His119 contribute 1.4 and 1.1 kcal/mol to complex stability, respectively. Determination of the stability of the complex of wild-type RNase A and 6-carboxyfluorescein approximately d(AUAA) at varying pHs by fluorescence anisotropy shows that the stability increases by 2.4 kcal/mol as the pH decreases from 8.0 to 4.0. At pH 4.0, replacing His12 with an alanine residue decreases the stability of the complex with 6-carboxyfluorescein approximately d(AUAA) by 2.3 kcal/mol. Together, these structural and thermodynamic data provide the first thorough analysis of the contribution of histidine residues to nucleic acid binding.  相似文献   

13.
Unlike wild type recoverin with only two (the second and the third) functioning Ca(2+)-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca(2+)-binding site. This site was reconstructed from the fourth potential Ca(2+)-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca(2+)-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild type recoverin.  相似文献   

14.
15.
Maurocalcine (MCa) is a 33 amino acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. MCa and mutated analogues were chemically synthesized, and their interaction with the skeletal muscle ryanodine receptor (RyR1) was studied on purified RyR1, sarcoplasmic reticulum (SR) vesicles, and cultured myotubes. MCa strongly potentiates [3H]ryanodine binding on SR vesicles (7-fold at pCa 5) with an apparent EC50 of 12 nm. MCa decreases the sensitivity of [3H]ryanodine binding to inhibitory high Ca2+ concentrations and increases it to the stimulatory low Ca2+ concentrations. In the presence of MCa, purified RyR1 channels show long-lasting openings characterized by a conductance equivalent to 60% of the full conductance. This effect correlates with a global increase in Ca2+ efflux as demonstrated by MCa effects on Ca2+ release from SR vesicles. In addition, we show for the first time that external application of MCa to cultured myotubes produces a cytosolic Ca2+ increase due to Ca2+ release from 4-chloro-m-cresol-sensitive intracellular stores. Using various MCa mutants, we identified a critical role of Arg24 for MCa binding onto RyR1. All of the other MCa mutants are still able to modify [3H]ryanodine binding although with a decreased EC50 and a lower stimulation efficacy. All of the active mutants produce both the appearance of a subconductance state and Ca2+ release from SR vesicles. Overall, these data identify some amino acid residues of MCa that support the effect of this toxin on ryanodine binding, RyR1 biophysical properties, and Ca2+ release from SR.  相似文献   

16.
Porcine pancreatic group I phospholipase A2 (PLA2-I) induced contraction of guinea pig parenchyma in a concentration-dependent manner. Its EC50 value was similar to the Kd value calculated from the specific binding of 125I-labeled porcine PLA2-I in the membrane fraction of guinea pig lung. Type-specific action of PLA2's and homologous desensitization strongly implicated the involvement of PLA2-I-specific sites in the activation process. Thromboxane A2 was found to be the main product from lung tissue by PLA2-I action and the contractile response by PLA2-I was specifically suppressed by thromboxane A2 receptor antagonists and cyclooxygenase inhibitor, but not by leukotriene receptor antagonist and H1 blocker. These findings indicate that PLA2-I-induced contractile response may depend on the secondarily produced thromboxane A2, thus providing a new aspect of PLA2-I from the pathophysiological standpoint.  相似文献   

17.
Arylsulfatase A belongs to the sulfatase family whose members carry a Calpha-formylglycine that is post-translationally generated by oxidation of a conserved cysteine or serine residue. The formylglycine acts as an aldehyde hydrate with two geminal hydroxyls being involved in catalysis of sulfate ester cleavage. In arylsulfatase A and N-acetylgalactosamine 4-sulfatase this formylglycine was found to form the active site together with a divalent cation and a number of polar residues, tightly interconnected by a net of hydrogen bonds. Most of these putative active site residues are highly conserved among the eukaryotic and prokaryotic members of the sulfatase family. To analyze their function in binding and cleaving sulfate esters, we substituted a total of nine putative active site residues of human ASA by alanine (Asp29, Asp30, Asp281, Asn282, His125, His229, Lys123, Lys302, and Ser150). In addition the Mg2+-complexing residues (Asp29, Asp30, Asp281, and Asn282) were substituted conservatively by either asparagine or aspartate. In all mutants Vmax was decreased to 1-26% of wild type activity. The Km was more than 10-fold increased in K123A and K302A and up to 5-fold in the other mutants. In all mutants the pH optimum was increased from 4.5 by 0.2-0.8 units. These results indicate that each of the nine residues examined is critical for catalytic activity, Lys123 and Lys302 by binding the substrate and the others by direct (His125 and Asp281) or indirect participation in catalysis. The shift in the pH optimum is explained by two deprotonation steps that have been proposed for sulfate ester cleavage.  相似文献   

18.
Effects of Ca2+ on the kinetic parameters for the hydrolysis of mixed micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (diC16PC) with Triton X-100, catalyzed by a cobra (Naja naja atra) (Group I) and a Habu (Trimeresurus flavoviridis) (Group II) PLA2s, were studied and compared with the results reported for other Group I and II enzymes. The substrate bindings to Group I enzymes were independent of the Ca2+ binding, whereas the substrate bindings to Group II enzymes were facilitated more than 10 times by the Ca2+ binding to the enzymes. The result for Group II enzymes, but not Group I enzymes, seemed compatible with the hypothesis for interpreting the catalytic mechanism that an intermediate complex should be stabilized by the coordination of the bound Ca2+ with the phosphoryl group and the carbonyl oxygen atom of the ester bond at the sn-2 position of the bound substrate molecule [Verheij et al. (1980) Biochemistry 19, 743-750 and (1981) Rev. Physiol. Biochem. Pharmacol. 91, 91-203]. The pH dependence of the kinetic parameters for the hydrolysis of the mixed micellar diC16PC, catalyzed by the cobra (N. naja atra) (Group I) and Habu (T. flavoviridis) (Group II) PLA2s, was also studied. The pK values of the catalytic group, His 48, and Tyr 52 for N. naja atra PLA2, shifted from 7.25 to 7.70 and from 10.30 to 10.85, respectively, and the corresponding values for T. flavoviridis PLA2 shifted from 5.80 to 6.95 and from 10.10 to 10.76, respectively, on binding of the micellar substrates to the enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate, and carbon dioxide, and uses Mn2+ as the activating metal ion. The enzyme is a monomer and presents 68% identity with Escherichia coli PEP carboxykinase. Comparison with the crystalline structure of homologous E. coli PEP carboxykinase [Tari, L. W., Matte, A., Goldie, H., and Delbaere, L. T. J. (1997). Nature Struct. Biol. 4, 990–994] suggests that His225, Asp262, Asp263, and Thr249 are located in the active site of the protein, interacting with manganese ions. In this work, these residues were individually changed to Gln (His225) or Asn. The mutated enzymes present 3–6 orders of magnitude lower values of V max/K m, indicating high catalytic relevance for these residues. The His225Gln mutant showed increased K m values for Mn2+ and PEP as compared with wild-type enzyme, suggesting a role of His225 in Mn2+ and PEP binding. From 1.5–1.6 Kcal/mol lower affinity for the 3(2)-O-(N-methylantraniloyl) derivative of adenosine diphosphate was observed for the His225Gln and Asp263Asn mutant A. succiniciproducens PEP carboxykinases, implying a role of His225 and Asp263 in nucleotide binding.  相似文献   

20.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号