首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.  相似文献   

3.
Abstract: Perlecan is a specific heparan sulfate proteoglycan that accumulates in the fibrillar β-amyloid (Aβ) deposits of Alzheimer's disease. Perlecan purified from the Engelbreth-Holm-Swarm tumor was used to define perlecan's interactions with Aβ and its effects on Aβ fibril formation. Using a solid-phase binding immunoassay, freshly solubilized full-length Aβ peptides bound immobilized perlecan at two sites, representing both high-affinity [KD = ~5.8 × 10?11M for Aβ (1–40); KD = ~6.5 × 10?12M for Aβ (1–42)] and lower-affinity [KD = 3.5 × 10?8M for Aβ (1–40); KD = 4.3 × 10?8M for Aβ (1–42)] interactions. An increase in the binding capacity of Aβ (1–40) to perlecan correlated with an increase in Aβ amyloid fibril formation during a 1-week incubation period. The high-capacity binding of Aβ (1–40) to perlecan was similarly observed using perlecan heparan sulfate glycosaminoglycans and was completely abolished by heparin, but not by chondroitin-4-sulfate. Using a thioflavin T fluorometry assay, perlecan accelerated the rate of Aβ (1–40) amyloid fibril formation, causing a significant increase in Aβ fibril assembly over a 2-week incubation period at 1 h (2.8-fold increase), 1 day (3.6-fold increase), and 3 days (2.8-fold increase) in comparison with Aβ (1–40) alone. Perlecan also initially accelerated the formation of Aβ (1–42) fibrils within 1 h and maintained significantly higher levels of Aβ (1–42) thioflavin T fluorescence throughout a 2-week experimental period in comparison with Aβ (1–42) alone, suggesting perlecan's ability to maintain amyloid fibril stability. Perlecan's effects on Aβ (1–40) fibril formation and maintenance of Aβ (1–42) fibril stability occurred in a dose-dependent manner and was also mediated primarily by perlecan's glycosaminoglycan chains. Perlecan was the most effective enhancer and accelerator of Aβ fibril formation when compared directly with other amyloid plaque components, including apolipoprotein E, α1-antichymotrypsin, P component, C1q, and C3. This study, therefore, demonstrates that perlecan not only binds to the predominant isoforms of Aβ, but also accelerates Aβ fibril formation and stabilizes amyloid fibrils once formed, confirming pivotal roles for perlecan in the pathogenesis of Aβ amyloidosis in Alzheimer's disease.  相似文献   

4.
E Ban  F Haour  R Lenstra 《Cytokine》1992,4(1):48-54
In an attempt to demonstrate and localize intracerebral interleukin 1 (IL-1) synthesis we examined IL-1 alpha and mRNA expression in various brain regions after peripheral administration of bacterial lipopolysaccharide (LPS) administration. Both IL-1 alpha and IL-1 beta gene expression were detected 3 hours after LPS administration by polymerase chain reaction (PCR), while no mRNA was found under basal conditions or 18 hours after injection. IL-1 alpha and IL-1 beta mRNAs were differently distributed within the brain. IL-1 alpha mRNA was found in the hippocampus while IL-1 beta mRNA was found in the striatum and in the thalamus. These results suggest that local synthesis of IL-1 in the brain might be responsible for IL-1 central effects. The presence of IL-1 receptor mRNA was investigated using a type I T-cell IL-1 receptor probe and no IL-1 receptor mRNA could be detected in the brain even with PCR.  相似文献   

5.
Heparan sulfate proteoglycans (HSPG) play a critical role in the formation of distinct fibroblast growth factor (FGF)-HS complexes, augmenting high-affinity binding and receptor activation. Perlecan, a secreted HSPG abundant in proliferating cells, is capable of inducing FGF-receptor interactions in vitro and angiogenesis in vivo. Stable and specific reduction of perlecan levels in mouse NIH 3T3 fibroblasts and human metastatic melanoma cells has been achieved by expression of antisense cDNA corresponding to the N-terminal and HS attachment domains of perlecan. Long-term perlecan downregulation is evidenced by reduced levels of perlecan mRNA and core protein as indicated by Northern blot analysis, immunoblots, and immunohistochemistry, using DNA probes and antibodies specific to mouse or human perlecan. The response of antisense perlecan-expressing cells to increasing concentrations of basic FGF (bFGF) is dramatically reduced in comparison to that in wild-type or vector-transfected cells, as measured by thymidine incorporation and rate of proliferation. Furthermore, receptor binding and affinity labeling of antisense perlecan-transfected cells with 125I-bFGF is markedly inhibited, indicating that eliminating perlecan expression results in reduced high-affinity bFGF binding. Both the binding and mitogenic response of antisense-perlecan-expressing clones to bFGF can be rescued by exogenous heparin or perlecan. These results support the notion that perlecan is a major accessory receptor for bFGF in mouse fibroblasts and human melanomas and point to the possible use of perlecan antisense constructs as specific modulators of bFGF-mediated responses.  相似文献   

6.
We examined the kainic acid-induced changes of mRNA levels of several cytokines such as IL-1 beta, IL-6, TNF alpha and LIF in the rat brain regions using semiquantitative RT-PCR method. IL-1 beta mRNA was markedly increased in the cerebral cortex (CC), thalamus (THL) and hypothalamus (HT) 2 h after the injection of kainic acid in a convulsive dose (12 mg/kg i.p.), and tended to decrease 4 h after the injection. IL-6 mRNA was weakly induced in the hippocampus (HPP) 2 h after the injection of kainic acid and was markedly increased in the CC, HPP, THL, and HT at 4 h. The level of TNF alpha mRNA was highly elevated in the CC, HPP, striatum (STR), THL and HT at 2 and 4 h after the injection. LIF mRNA apparently expressed in the CC and HPP of control rats and was increased in the CC, HPP and HT by the treatment with kainic acid. These results indicate that mRNAs of several cytokines are increased in various brain regions with different time-courses by kainic acid.  相似文献   

7.
8.
Li YZ  Liu XH  Cai LR 《生理学报》2007,59(2):221-226
低氧可以抑制内皮细胞增殖,但是其机理目前尚不清楚。串珠素在调节内皮细胞增殖中发挥着重要作用。为了探讨串珠素是否参与低氧对内皮细胞增殖的抑制,将大鼠心肌微血管内皮细胞在低氧或常氧状态下培养12 h后,用实时定量RT-PCR方法检测串珠素mRNA的表达。结果发现:低氧可以明显抑制串珠素mRNA的表达,与常氧状态下串珠素mRNA表达水平比较,差异显著(P〈0.05)。与此同时,低氧状态下或用串珠素抗体中和内源性串珠素,内皮细胞的增殖和对成纤维细胞生长因子的反应明显降低,粘着斑激酶(focal adhesion kinase,FAK)表达和细胞外信号调节激酶1/2(extracellular signal- regulated kinase,ERK1/2)活性明显下降。结果提示,串珠素表达下调可能通过抑制FAK介导的ERK1/2依赖的信号转导途径,参与低氧对大鼠心肌微血管内皮细胞增殖的抑制作用。  相似文献   

9.
Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and its expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.  相似文献   

10.
11.
Heparin-binding growth factors are crucial for the formation of human epidermis, but little is known about the role of heparan sulfate proteoglycans in this process. Here we investigated the role of the heparan sulfate proteoglycan, perlecan, in the formation of human epidermis, by utilizing in vitro engineered human skin. By disrupting perlecan expression either in the dermis or the epidermis, we found that epidermally derived perlecan is essential for epidermal formation. Perlecan-deficient keratinocytes formed a strikingly thin and poorly organized epidermis because of premature apoptosis and failure to complete their stratification program. Exogenous perlecan fully restored epidermal formation. Perlecan deposition in the basement membrane zone correlated with formation of multilayered epidermis. Perlecan deficiency, however, had no effect on the lining and deposition of major basement membrane components as was evident by a continuous linear staining of laminin and collagen IV. Similarly, perlecan deficiency did not affect the distribution of beta1 integrin. Addition of the perlecan ligand, fibroblast growth factor 7, protected perlecan-deficient keratinocytes from cell death and improved the thickness of the epidermis. Taken together, our results revealed novel roles for perlecan in epidermal formation. Perlecan regulates both the survival and terminal differentiation steps of keratinocytes. Our results suggested a model whereby perlecan regulates these processes via controlling the bioavailability of perlecan-binding soluble factors involved in epidermal morphogenesis.  相似文献   

12.
13.
Brain trauma was induced in mice using a closed head injury (CHI) model. At 1, 6 or 24 h after trauma, brains were dissected into the cortex, striatum and hippocampus. Changes in levels of processed X-box protein 1 (xbp1), glucose-regulated protein 78 (grp78), growth arrest and DNA damage-inducible gene 153 (gadd153) and heat-shock protein 70 (hsp70) mRNA, indicating impaired endoplasmic reticulum (ER) and cytoplasmic functioning, were evaluated by quantitative PCR. In the cortex, processed xbp1 mRNA levels rose to 2000% of control 1 h after CHI, and stayed high throughout the experiments. In the hippocampus and striatum, processed xbp1 mRNA levels rose in a delayed fashion, peaking at 6 h (1000% of control) and 24 h after CHI (1500% of control) respectively. Levels of grp78 mRNA were only slightly increased in the cortex 24 h after CHI (150% of control), and were unchanged or transiently decreased in the hippocampus and striatum. Levels of gadd153 mRNA did not change significantly after trauma. A transient rise in hsp70 mRNA levels was observed only in the cortex, peaking at 1 h after CHI (600% of control). Processing of xbp1 mRNA is a sign of activation of the unfolded protein response indicative of ER dysfunction. The results suggest that brain trauma induces ER dysfunction, which spreads from the ipsilateral cortex to the hippocampus and striatum. These observations may have clinical implications and should therefore be considered for future investigations on therapeutic intervention of brain injury caused by contusion-induced neurotrauma.  相似文献   

14.
Chronic obstructive pulmonary disease (COPD) and asthma are characterized by irreversible remodeling of the airway walls, including thickening of the airway smooth muscle layer. Perlecan is a large, multidomain, proteoglycan that is expressed in the lungs, and in other organ systems, and has been described to have a role in cell adhesion, angiogenesis, and proliferation. This study aimed to investigate functional properties of the different perlecan domains in relation to airway smooth muscle cells (ASMC). Primary human ASMC obtained from donors with asthma (n = 13), COPD (n = 12), or other lung disease (n = 20) were stimulated in vitro with 1 ng/ml transforming growth factor-β(1) (TGF-β(1)) before perlecan deposition and cytokine release were analyzed. In some experiments, inhibitors of signaling molecules were added. Perlecan domains I-V were seeded on tissue culture plates at 10 μg/ml with 1 μg/ml collagen I as a control. ASM was incubated on top of the peptides before being analyzed for attachment, proliferation, and wound healing. TGF-β(1) upregulated deposition of perlecan by ASMC from COPD subjects only. TGF-β(1) upregulated release of IL-6 into the supernatant of ASMC from all subjects. Inhibitors of SMAD and JNK signaling molecules decreased TGF-β(1)-induced perlecan deposition by COPD ASMC. Attachment of COPD ASMC was upregulated by collagen I and perlecan domains IV and V, while perlecan domain II upregulated attachment only of asthmatic ASMC. Seeding on perlecan domains did not increase proliferation of any ASMC type. TGF-β(1)-induced perlecan deposition may enhance attachment of migrating ASMC in vivo and thus may be a mechanism for ASMC layer hypertrophy in COPD.  相似文献   

15.
Abstract: Growth factors are peptides that exert different activities in the CNS, supporting the survival of different cell populations and playing an important role in the maintenance of cell homeostasis. Much evidence has suggested that these molecules can protect neurons from degeneration induced by mechanical injury or excitotoxic stimuli. Different factors can contribute to the regulation of neurotrophic factor expression in the brain. Such mechanisms may therefore be important in the manipulation of the levels of these peptides in specific brain areas as a therapeutic intervention in acute and chronic neurodegenerative diseases. We have used a primary culture of rat cortical astrocytes to investigate the regulation of basic fibroblast growth factor (bFGF) gene expression in comparison with other neurotrophic molecules. Our results indicate that the glucocorticoid analogue dexamethasone markedly elevates bFGF mRNA levels but reduces the expression of nerve growth factor. The induction of bFGF was transient, as it peaked after 6 h and returned to basal levels within 24 h and was not blocked by coincubation of cycloheximide, thus indicating that it did not require de novo protein synthesis. This effect was also observed in vivo, as systemic injection of dexamethasone (1 or 10 mg/kg) produced a significant increase in the amount of bFGF mRNA in cerebral cortex and hippocampus. The effect we describe can contribute to the regulation of bFGF expression in the brain and may be important in relation to the protective effect exerted by this growth factor in different models of neuronal injury.  相似文献   

16.
The expression of interleukin-1 beta (IL-1 beta) mRNA in the cerebral cortex, hippocampus, striatum, and thalamus of rats was studied after transient forebrain ischemia. IL-1 beta mRNA was not detected in all these regions of sham-operated control rats. IL-1 beta mRNA was induced after transient forebrain ischemia and reached a detectable level in all regions examined 15 min after the start of recirculation. The induction of IL-1 beta mRNA had a few peaks, that is, peaks were observed at 30 and 240 min in the four regions examined, and another peak was observed at 90 min in the striatum. One day after the start of recirculation, IL-1 beta mRNA levels were markedly decreased, but even 7 days after that, IL-1 beta mRNA was found at very low levels in all regions examined. The amounts of c-fos and beta-actin mRNAs on the same blots were also examined. The induction of c-fos mRNA was transient and had only one peak in all regions examined, whereas the levels of beta-actin mRNA in these regions were fairly constant throughout the recirculation period. Thus, we provide the first evidence for a characteristic expression of IL-1 beta mRNA in several brain regions after transient forebrain ischemia.  相似文献   

17.
目的本实验应用大脑中动脉栓塞(MCAO)模型,观察bFGF对脑缺血再灌注损伤后海马及顶叶皮质中Wnt通路抑制因子Dickkopf-1(DKK-1)和Wnt通路中pCatenin的表达作用的影响,以探讨Wnt通路对缺血性脑损伤的作用机制,为临床治疗缺血性脑血管病提供实验依据。方法应用线栓法制作大鼠局灶性脑缺血再灌注模型,大脑中动脉阻塞1h再灌注损伤24h,采用免疫组织化学SABC法及RT-PCR法检测海马及顶叶皮质CA1区神经元β-Catenin和DKK-1mRNA的表达。结果正常sham组,大鼠海马组织DKK-1 mRNA表达较少,β-Catenin阳性产物在细胞质内有所表达;I/R组,DKK-1 mRNA表达明显增多,β-Catenin在胞质内表达明显减少;bFGF组,大鼠海马组织DKK-1 mRNA表达较I/R组明显减少,而海马细胞质内β-Catenin表达较I/R组明显增加。结论bFGF抑制缺血神经元凋亡,参与DKK-1 mRNA和β-Catenin的调节,对缺血神经元有保护作用。  相似文献   

18.
Sepsis is defined as the host's reaction to infection and characterised by a systemic inflammatory response with important clinical implications. Central nervous system dysfunction secondary to sepsis is associated with local generation of pro- and anti-inflammatory cytokines, impaired cerebral microcirculation, an imbalance of neurotransmitters, apoptosis and cognitive impairment. It's known that the IL-1β is one of the first cytokines to be altered. Thus, the objective of this study was to evaluate the role of IL-1β in cognitive parameters in brain tissue through the use of an IL-1β (IL-1ra) receptor antagonist up to 10 days and to assess blood–brain barrier permeability, cytokine levels, oxidative parameters and energetic metabolism up to 24 h, after sepsis induction. To this aim, we used sham-operated Wistar rats or submitted to the cecal ligation and perforation (CLP) procedure. Immediately after, the animals received one dose of 10 μg of IL-1ra. After 24 h, the rats were killed and were evaluated for biochemical parameters in the pre-frontal cortex, hippocampus and striatum. After 10 days, the animals were submitted to the habituation to the open field and step-down inhibitory avoidance task. We observed that the use of IL-1ra reverted the increase of blood–brain barrier permeability in the pre-frontal cortex, hippocampus and striatum; the increase of IL-1β, IL1-6 and TNF-α levels in the pre-frontal cortex and striatum; the decrease of complex I activity in the pre-frontal, hippocampus and striatum; the increase of oxidative parameters in pre-frontal cortex, hippocampus and striatum; and cognitive impairment. In conclusion, the results observed in this study reinforce the role of acute brain inflammatory response, in particular, the IL1β response, in the cognitive impairment associated with sepsis.  相似文献   

19.
20.
Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号